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Overview of Java Streams

 Java streams are a framework first
introduced into the Java class library
in Java 8
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What's New in JDK 8

Java Platform, Standard Edition 8 is a major feature release. This document summarizes features and
enhancements in Java SE 8 and in JDK 8, Oracle's implementation of Java SE 8. Click the
component name for a more detailed description of the enhancements for that component.

Java Programming Language

= Lambda Expressions, a new language feature, has been introduced in this release. They
enable you to treat functionality as a method argument, or code as data. Lambda
expressions let you express instances of single-method interfaces (referred to as functional
interfaces) more compactly.

= Method references provide easy-to-read lambda expressions for methods that already have
aname.

= Default methods enable new functionality to be added to the interfaces of libraries and
ensure binary compatibility with code written for older versions of those interfaces.

= Repeating Annotations provide the ability to apply the same annotation type more than once
to the same declaration or type use.

= Type Annctations provide the ability to apply an annotation anywhere a type is used, not
just on a declaration. Used with a pluggable type system, this feature enables improved
type checking of your code.

* Improved type inference.

* Method parameter reflection.

Collections

= Classes inthe new java.util.stream package provide a Stream API to support
functional-style operations on streams of elements. The Stream API is integrated into the
Collections API, which enables bulk operations on collections, such as sequential or
parallel map-reduce transformations.

* Performance Improvement for HashMaps with Key Collisions

See docs.oracle.com/javase/tutorial/collections/streams
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An aggregate operation is a higher-
order function that applies a "behavior”
param to every element in a stream.
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See en.wikipedia.org/wiki/Higher-order function
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Behavior parameterization simplifies
coping with changing requirements.
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See blog.indrek.io/articles/java-8-behavior-parameterization
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Overview of Java Streams
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A stream is conceptually unbounded, though it’s often bounded by practical constraints.
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Overview of Java Streams

« A Java stream is an implementation of the POSA1 Pjpes & Filters pattern
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Divide an app’s tasks into multiple self-contained data
processing steps & connect these steps via intermediate
data buffers to form a data processing pipeline

See hillside.net/
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Overview of Java Streams

» We use this stream as a case study example throughout this introduction

~ ™
Stream

.of ("Ophelia", "horatio",
"laertes", "Gertrude",

"Hamlet","fortinbras", ...)
.filter (s -> toLowerCase
(s.charAt(0)) == 'h'")
.map (this: :capitalize)
.sorted()

.forEagh(System.out::println);
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Print each character in Hamlet that starts with 'H’
or 'h’in consistently capitalized & sorted order.

Aggregate operation (behavior h)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12
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The Evolution of Java Streams

e Java streams have evolved a bit over time
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The Evolution of Java Streams

 Java streams have evolved a bit over time, e.qg.

« Later versions of Java added some
new operations Stream

Lambdas, streams, functional and reactive programming
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See www.baeldung.com/java-9-stream-api & blog.codefx.org/java/teeing-collector
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The Evolution of Java Streams
» Java streams have evolved a bit over time, e.g.

‘R
@ Publisher =

subscribe( Subscriber<? super R> )

@ Subscriber “I

— M onSubscribe(Subscription)
onNext(T)
onError(Throwable)

» Java 9 also added a new API that onComplete0
implements the reactive streams % |
specification \ v

@) subscription

request(long)
cancel()

See www.reactive-streams.org



http://www.reactive-streams.org/

The Evolution of Java Streams

» Java streams have evolved a bit over time, e.g.

« Java 9 also added a new API that
implements the reactive streams
specification
« Reactive streams frameworks

are covered later in this course

Project
Reactor

See upcoming lessons on RxJava & Project Reactor




End of Overview
of Java Streams
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