Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand Java streams structure &
functionality

Stream source

! | Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

! | Output g(f(x))

Aggregate operation (behavior h)

Learning Objectives in this Part of the Lesson

« Understand Java streams structure &
functionality, e.g.

« Fundamentals of streams

Stream source

! ! Input x

Aggregate operation (behavior f)

! ! Output f(x)

Aggregate operation (behavior g)

! ! Output g(f(x))

Aggregate operation (behavior h)

Learning Objectives in this Part of the Lesson

« Understand Java streams structure &
functionality, e.g.

« Fundamentals of streams
« & the evolution of streams

PIrIsY

Stream source

! | Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

! | Output g(f(x))

Aggregate operation (behavior h)

Overview of
Java Streams

Overview of Java Streams

 Java streams are a framework first
introduced into the Java class library
in Java 8

)
ramma>

Java g

What's New in JDK 8

Java Platform, Standard Edition 8 is a major feature release. This document summarizes features and
enhancements in Java SE 8 and in JDK 8, Oracle's implementation of Java SE 8. Click the
component name for a more detailed description of the enhancements for that component.

Java Programming Language

= Lambda Expressions, a new language feature, has been introduced in this release. They
enable you to treat functionality as a method argument, or code as data. Lambda
expressions let you express instances of single-method interfaces (referred to as functional
interfaces) more compactly.

= Method references provide easy-to-read lambda expressions for methods that already have
aname.

= Default methods enable new functionality to be added to the interfaces of libraries and
ensure binary compatibility with code written for older versions of those interfaces.

= Repeating Annotations provide the ability to apply the same annotation type more than once
to the same declaration or type use.

= Type Annctations provide the ability to apply an annotation anywhere a type is used, not
just on a declaration. Used with a pluggable type system, this feature enables improved
type checking of your code.

* Improved type inference.

* Method parameter reflection.

Collections

= Classes inthe new java.util.stream package provide a Stream API to support
functional-style operations on streams of elements. The Stream API is integrated into the
Collections API, which enables bulk operations on collections, such as sequential or
parallel map-reduce transformations.

* Performance Improvement for HashMaps with Key Collisions

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams

Overview of Java Streams

« A stream is a pipeline of aggregate operations that process a sequence of
elements (aka, “values” or “data”) U Input x

Aggregate operation (behavior)

! | Output f(x)

Aggregate operation (behavior g)

! | Output g(f(x))

Aggregate operation (behavior h)

See docs.oracle.com/javase/tutorial/collections/streams

https://docs.oracle.com/javase/tutorial/collections/streams

Overview of Java Streams

« A stream is a pipeline of aggregate operations that process a sequence of

elements (aka, “values” or “data”)

! | Input x

Aggregate operation (behavior f)

! I Output f(x)

Aggregate operation (behavior g)

An aggregate operation is a higher-
order function that applies a "behavior”
param to every element in a stream.

! | Output g(f(x))

Aggregate operation (behavior h)

See en.wikipedia.org/wiki/Higher-order function

https://en.wikipedia.org/wiki/Higher-order_function

Overview of Java Streams

« A stream is a pipeline of aggregate operations that process a sequence of

elements (aka, “values” or “data”)

! | Input x

Aggregate operation (behavior f)

L, oo

Aggregate operation (behavior g)

W(X»

Behavior parameterization simplifies
coping with changing requirements.

Aggregate operation (lzehavior h)

/

See blog.indrek.io/articles/java-8-behavior-parameterization

https://blog.indrek.io/articles/java-8-behavior-parameterization/

Overview of Java Streams
« A stream is a pipeline of aggregate operations that process a sequence of

! | Input x

Aggregate operation (behavior)

i | T / "
- ' @ Output f(x)
/'l - : o
' s

///////l ey]
111 s .

g
L’""’“’_"
[

I [i — ” Aggregate operation (behavior g)

! | Output g(f(x))

Aggregate operation (behavior h)

A stream is conceptually unbounded, though it’s often bounded by practical constraints.

10

Overview of Java Streams

« A Java stream is an implementation of the POSA1 Pjpes & Filters pattern

Input Device

Filter 1

"~ AR

il

WWILEY

P
=

input
I

Output Device

PATTERN-ORIENTED
- | SOFTWARE

Pipe 1 Filter 2
|
Filter N Pipe N-1

S~

Divide an app’s tasks into multiple self-contained data
processing steps & connect these steps via intermediate
data buffers to form a data processing pipeline

See hillside.net/

dlo

2011/

DA

ers/B-10-Hanmer.pdf

http://hillside.net/plop/2011/papers/B-10-Hanmer.pdf

Overview of Java Streams

» We use this stream as a case study example throughout this introduction

~ ™
Stream

.of ("Ophelia", "horatio",
"laertes", "Gertrude",

"Hamlet","fortinbras", ...)
.filter (s -> toLowerCase
(s.charAt(0)) == 'h'")
.map (this: :capitalize)
.sorted()

.forEagh(System.out::println);

\

J

! | Input x

Aggregate operation (behavior f)

! | Output f(x)

Aggregate operation (behavior g)

! | Output g(f(x))

Print each character in Hamlet that starts with 'H’
or 'h’in consistently capitalized & sorted order.

Aggregate operation (behavior h)

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

The Evolution of
Java Streams

13

The Evolution of Java Streams

e Java streams have evolved a bit over time

a6 K%

14

The Evolution of Java Streams

 Java streams have evolved a bit over time, e.qg.

« Later versions of Java added some
new operations Stream

Lambdas, streams, functional and reactive programming

Collector1 Collector2

Raoul-Gabriel Urma
Mario Fusco
Alan Mycroft

—O0—C0——0—"—0C——=06»

Y Y

[takeWhilei > i <4) |
—0—060— >
06000+

v

I) .d;opWh'ivle('i -> <v4) ' |

o—o0—6—b

/.' MANNING

See www.baeldung.com/java-9-stream-api & blog.codefx.org/java/teeing-collector

http://www.baeldung.com/java-9-stream-api
https://blog.codefx.org/java/teeing-collector/

The Evolution of Java Streams
» Java streams have evolved a bit over time, e.g.

‘R
@ Publisher =

subscribe(Subscriber<? super R>)

@ Subscriber “I

— M onSubscribe(Subscription)
onNext(T)
onError(Throwable)

» Java 9 also added a new API that onComplete0
implements the reactive streams % |
specification \ v

@) subscription

request(long)
cancel()

See www.reactive-streams.org

http://www.reactive-streams.org/

The Evolution of Java Streams

» Java streams have evolved a bit over time, e.g.

« Java 9 also added a new API that
implements the reactive streams
specification
« Reactive streams frameworks

are covered later in this course

Project
Reactor

See upcoming lessons on RxJava & Project Reactor

End of Overview
of Java Streams

18

