are Developed in Java (Part 1)

Douglas C. Schmidt
i.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize the parallelism frameworks
supported by Java, e.q.

» Fork-join pools

» An object-oriented data
parallelism framework

See docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Overview of Java Object-
Oriented Parallelism
Frameworks

3

Overview of Java Object-Oriented Parallelism Frameworks

« The fork-join framework defines an
object-oriented parallelism model

See www.infog.com/interviews/doug-lea-fork-join

http://www.infoq.com/interviews/doug-lea-fork-join

Overview of Java Object-Oriented Parallelism Frameworks

« The fork-join framework defines an
object-oriented parallelism model

« Provides high performance,

DataSource

fork()

DataSource,

fine-grained task execution

DataSource,

DataSource; 4

fork()

fork()

DataSource; , DataSource, ;

DataSource, ,

Process
sequentially

Process Process
sequentially sequentially

Process
sequentially

Designed to scale up to processors with many cores (¢, the executor framework)

Overview of Java Object-Oriented Parallelism Frameworks

« The fork-join framework defines an
object-oriented parallelism model

« The focus is on data parallelism

* i.e., data is partitioned across
multiple threads/cores, which
operate on the data in parallel

See en.wikipedia.org/wiki/Data parallelism

https://en.wikipedia.org/wiki/Data_parallelism

Overview of Java Object-Oriented Parallelism Frameworks

» The fork-join framework defines an [ciass ForkjoinTask<v>
object-oriented parallelism model |z ensonea

java.util.concurrent.ForkjoinTask<V>

All Implemented Interfaces:

Serializable, Future<V>

Direct Known Subclasses:

CountedCompleter, RecursiveAction, RecursiveTask

public abstract class ForkJoinTask<V>

* The key abstraction is the extends Object

implements Future<V>, Serializable

FO rkJ OI nTa Sk Abstract base class for tasks that run within a ForkJoinPool. A ForkJoinTask is a thread-like

entity that is much lighter weight than a normal thread. Huge numbers of tasks and subtasks
may be hosted by a small number of actual threads in a ForkJoinPool, at the price of some usage
limitations.

A "main" ForkJoinTask begins execution when it is explicitly submitted to a ForkJoinPool, or,
if not already engaged in a ForkJoin computation, commenced in the
ForkJoinPool.commonPool() via fork(), invoke(), or related methods. Once started, it will
usually in turn start other subtasks. As indicated by the name of this class, many programs
using ForkJoinTask employ only methods fork() and join(), or derivatives such as
invokeAll. However, this class also provides a number of other methods that can come into
play in advanced usages, as well as extension mechanics that allow support of new forms of
fork/join processing.

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

Overview of Java Object-Oriented Parallelism Frameworks

« The fork-join framework defines an
object-oriented parallelism model

» The key abstraction is the ForkJoinTask
ForkJoinTask

A ForkJoinTask is lighter weight
than a Java thread

Thread

e.g., it doesn’t maintain its own run-time stack, registers, thread-local storage, etc.

Overview of Java Object-Oriented Parallelism Frameworks

« The fork-join framework defines an
object-oriented parallelism model

< < % % s s
£ % % % 5 K-

=5 | ForkJoinTasks -

* The key abstraction is the
ForkJoinTask

« A large # of ForkJoinTasks can
thus run in a small # of worker
threads in a fork-join pool

Overview of Java Object-Oriented Parallelism Frameworks
« The fork-join framework defines an solve (Problem problem) ({

object-oriented parallelism model if (problem is small)
directly solve problem
else {

a. split problem into
independent parts
b. fork new sub-tasks

to solve each part
c. join all sub-tasks

» Supports parallel programming d. compose result
by solving problems via “divide from sub-results
& conquer” }

See en.wikipedia.org/wiki/Divide and conguer algorithm

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

Overview of Java Object-Oriented Parallelism Frameworks
« The fork-join framework defines an solve (Problem problem) ({

object-oriented parallelism model if (problem is small)
directly solve problem
else {

a. split problem into
independent parts
b. fork new sub-tasks

to solve each part
c. join all sub-tasks

» Supports parallel programming d. compose result
by solving problems via “divide from sub-results
& conquer” }

11

Overview of Java Object-Oriented Parallelism Frameworks
« The fork-join framework defines an solve (Problem problem) ({

object-oriented parallelism model if (problem is small)
directly solve problem
else {

a. split problem into
independent parts
b. fork new sub-tasks

to solve each part
c. join all sub-tasks

» Supports parallel programming d. compose result
by solving problems via “divide from sub-results
& conquer” }

12

Overview of Java Object-Oriented Parallelism Frameworks
« The fork-join framework defines an solve (Problem problem) ({

object-oriented parallelism model if (problem is small)
directly solve problem
else {

a. split problem into
independent parts
b. fork new sub-tasks

to solve each part
c. join all sub-tasks

» Supports parallel programming d. compose result
by solving problems via “divide from sub-results
& conquer” }

13

Overview of Java Object-Oriented Parallelism Frameworks
« The fork-join framework defines an solve (Problem problem) ({

object-oriented parallelism model if (problem is small)
directly solve problem
else {

a. split problem into
independent parts
b. fork new sub-tasks

to solve each part
c. jJoin all sub-tasks

» Supports parallel programming d. compose result
by solving problems via “divide from sub-results
& conquer” }

14

Overview of Java Object-Oriented Parallelism Frameworks
« The fork-join framework defines an solve (Problem problem) ({

object-oriented parallelism model if (problem is small)
directly solve problem
else {

a. split problem into
independent parts
b. fork new sub-tasks

to solve each part
c. join all sub-tasks

» Supports parallel programming d. compose result
by solving problems via “divide from sub-results
& conquer” }

15

Evaluating the Pros & Cons
of the Fork-Join Framework

16

Evaluating the Pros & Cons of the Fork-Join Framework

 Pros of the fork-join framework

17

Evaluating the Pros & Cons of the Fork-Join Framework

 Pros of the fork-join framework Fork-Join Pool

« Employs work-stealing to maximize Deque Deque Deque
multi-core processor utilization

Sub-Task, »
Sub-Task, 3

Sub-Task; 3

Sub-Task, 4 j= Sub-Task; 4

See gee.cs.oswego.edu/dl/papers/fij.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf

Evaluating the Pros & Cons of the Fork-Join Framework
 Pros of the fork-join framework

Interface ForkJoinPool.ManagedBlocker

Enclosing class:

ForkJoinPool

« The common fork-join pool size can
be expanded aUtomatlca ”y Vla the Interface for extending managed parallelism for tasks running in
ManagedBlocker mechanism ForkJoinPools,

A ManagedBlocker provides two methods. Method isReleasable()
must return true if blocking is not necessary. Method block() blocks

the current thread if necessary (perhaps internally invoking
isReleasable before actually blocking). These actions are performed
by any thread invoking

ForkJoinPool.managedBlock(ManagedBlocker). The unusual methods
in this API accommodate synchronizers that may, but don't usually,
block for long periods. Similarly, they allow more efficient internal
handling of cases in which additional workers may be, but usually are
not, needed to ensure sufficient parallelism. Toward this end,
implementations of method isReleasable must be amenable to
repeated invocation.

public static interface ForkJoinPool.ManagedBlocker

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

Evaluating the Pros & Cons of the Fork-Join Framework

« Cons of the fork-join framework

20

Evaluating the Pros & Cons of the Fork-Join Framework

« Cons of the fork-join framework

« It can be tedious & error-prone to
program

Evaluating the Pros & Cons of the Fork-Join Framework

« Cons of the fork-join framework ST
« It can be tedious & error-prone to ©ForkJoinTask<V>

program, e.g., &
« It uses a “white-box” object-

oriented design based on <<Java Class>>
inheritance (& RecursiveAction
'compute():void

<<Java Class>>
& RecursiveTask<V>

'compute()

<<Java Class>>
& CountedCompleter<T>
~completer

a'compute():void jo 1

See www.laputan.org/drc.html

http://www.laputan.org/drc.html

Evaluating the Pros & Cons of the Fork-Join Framework

« Cons of the fork-join framework

« It can be tedious & error-prone to
program, e.g.,

« It uses a “white-box” object-
oriented design based on
inheritance

« It's not well integrated with
modern Java’s functional
programming features

See docs.oracle.com/javase/tutorial/java/javaO0O/lambdaexpressions.html

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Evaluating the Pros & Cons of the Fork-Join Framework

« Cons of the fork-join framework Completable Futures
« It can be tedious & error-prone to e - 80 €5 e
supplyAsync ool SRLL., 36 Para"el Streams
program’ e.g., (getStartPage())

NN O
1 ‘ «26 oy o Ir=—— e ————— 1
/imgNum\ = /page\ 8} /imgNum\ = /page\ 9 E%g @95 :E 9? =E éé
1 1

oriented design based on “nenapplyneyne thencomposeAsync

« It uses a “white-box” object-

programming features T § i
- co//ect(ltoLllst()) : :
Overcoming these cons’ motivates Javas paralle/ | =~

functional programming frameworks, both of
which encapsulate the Java fork-join framework

1
1
1
. . (countImagés (pag?)) (c:(:awll-l;)(ferLinks i filter(not(this::urlCached)) i
Inherltance .thenApply (List: :size) pag E @ Ei ii i
1 2 1l al 1
- - 1 fenee
o It's not well integrated with . .X, / (2 e e L TN |
. . . 1 1 1
modern Java’s functional rmgmen hencomune smen, 4 S b M i
Integer: :sum) || flatMap(this::applyFilters) !
i | i
1 1
1 1
1 1
1 1

24

End of How Parallel
Programs Are Developed
in Java (Part 1)

25

Discussion Questions

a. Which of the following statements accurately describes the cons of
the Fork-Join framework in Java as mentioned in the presentation?

a. It is highly integrated with modern Java's functional programming
features

b. The Fork-Join framework uses a "black-box" object-oriented design
based on composition

C. The framework is focused on task parallelism rather than data
parallelism

d. The Fork-Join framework can be tedious & error-prone to program
due to its "white-box" object-oriented design based on inheritance

26

