
Overview of Parallel
Programming Concepts

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the meaning of key concepts associated with parallel

programming
• i.e., the “split, apply, combine”

parallel processing model

join join join join

Sub-Task1.1 Sub-Task1.2 Sub-Task2.1 Sub-Task2.2

fork fork forkfork

join join

join

Sub-Task1 Sub-Task2

forkfork

Task

See en.wikipedia.org/wiki/Parallel_computing

https://en.wikipedia.org/wiki/Parallel_computing

3

An Overview of
Parallel Programming

4See www.jstatsoft.org/article/view/v040i01/v40i01.pdf

An Overview of Parallel Programming
• Parallel programming is a form of computing

that performs three phases on multiple
processors or processor cores

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

http://www.jstatsoft.org/article/view/v040i01/v40i01.pdf

5

• Parallel programming is a form of computing
that performs three phases on multiple
processors or processor cores, i.e.
• Split – partition an initial

task into multiple sub-tasks

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Ideally sub-tasks are split efficiently & evenly (& recursively until a threshold is met)

An Overview of Parallel Programming

6

• Parallel programming is a form of computing
that performs three phases on multiple
processors or processor cores, i.e.
• Split – partition an initial

task into multiple sub-tasks
• Apply – Run independent

sub-tasks in parallel

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

join join
join

Each sub-task runs sequentially, but together they run in parallel

An Overview of Parallel Programming

7

• Parallel programming is a form of computing
that performs three phases on multiple
processors or processor cores, i.e.
• Split – partition an initial

task into multiple sub-tasks
• Apply – Run independent

sub-tasks in parallel
• Combine – Merge the sub-

results from sub-tasks into
a single “reduced” result

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

An Overview of Parallel Programming

The final reduced result can be a primitive value, an object, a collection, etc.

8

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently

An Overview of Parallel Programming

See developer.ibm.com/articles/j-java-streams-4-brian-goetz

https://developer.ibm.com/articles/j-java-streams-4-brian-goetz/

9

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics

An Overview of Parallel Programming

See en.wikipedia.org/wiki/Computer_performance

https://en.wikipedia.org/wiki/Computer_performance

10

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics

An Overview of Parallel Programming

See en.wikipedia.org/wiki/Up_to_eleven

https://en.wikipedia.org/wiki/Up_to_eleven

11See en.wikipedia.org/wiki/Throughput

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics, e.g.,
• Throughput
• How many units of info a system

can process within a given time

An Overview of Parallel Programming

https://en.wikipedia.org/wiki/Throughput

12See www.comparitech.com/net-admin/throughput-vs-bandwidth

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics, e.g.,
• Throughput
• How many units of info a system

can process within a given time
• There’s often a difference between

max throughput vs. actual throughput

An Overview of Parallel Programming

Peak performance is limited in practice by overheads like resource
contention, software inefficiency, external dependencies, & interference

http://www.comparitech.com/net-admin/throughput-vs-bandwidth

13See en.wikipedia.org/wiki/Scalability

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics, e.g.,
• Throughput
• Scalability
• A system’s ability to handle a

growing amount of workload

An Overview of Parallel Programming

https://en.wikipedia.org/wiki/Scalability

14See en.wikipedia.org/wiki/Autoscaling

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics, e.g.,
• Throughput
• Scalability
• A system’s ability to handle a

growing amount of workload
• Scalability is often associated w/

cloud computing “autoscaling”

An Overview of Parallel Programming

https://en.wikipedia.org/wiki/Autoscaling

15

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics, e.g.,
• Throughput
• Scalability
• A system’s ability to handle a

growing amount of workload
• Scalability is often associated w/

cloud computing “autoscaling”
• However, we focus on Java multi-core parallelism, not cloud parallelism

An Overview of Parallel Programming

Parallel Streams

Fork-Join Pool

See reintech.io/blog/java-parallel-programming-utilizing-multiple-cores

https://reintech.io/blog/java-parallel-programming-utilizing-multiple-cores

16See en.wikipedia.org/wiki/Latency_(engineering)

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics, e.g.,
• Throughput
• Scalability
• Latency
• The delay between a user's action

& a system’s response to that action

An Overview of Parallel Programming

https://en.wikipedia.org/wiki/Latency_(engineering)

17

• A key goal of parallel programming is
to partition many tasks into sub-tasks
& combine results efficiently
• Parallelism is thus an optimization of

key performance characteristics, e.g.,
• Throughput
• Scalability
• Latency
• The delay between a user's action

& a system’s response to that action
• Minimizing latency (& jitter) is often essential

for mission- & safety-critical real-time systems

An Overview of Parallel Programming

See en.wikipedia.org/wiki/Real-time_computing

https://en.wikipedia.org/wiki/Real-time_computing

18

End of Overview of Parallel
Programming Concepts

19

1.Which of the following are key goals of parallelism?
a.Parallelism is used to offload work from a non-blocking

user interface thread to background threads that can
block
b.Parallelism is used to efficiently partition tasks into sub-

tasks & combine results
c.Parallelism focuses on sharing resources safely/efficiently

& avoid concurrency hazards
d.Parallelism focuses on optimizing performance by

avoiding resource sharing & not blocking

Discussion Questions

