
The History of Concurrency
Support in Java

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

• Understand the meaning of key
concurrent programming concepts

• Recognize how Java supports
concurrent programming concepts

• Be aware of common concurrency
hazards faced by Java programmers

• Learn Java concurrency history

JAVA
HISTORY

3

Learning Objectives in this Part of the Lesson

You may already know some of this history!

• Understand the meaning of key
concurrent programming concepts

• Recognize how Java supports
concurrent programming concepts

• Be aware of common concurrency
hazards faced by Java programmers

• Learn Java concurrency history

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

4

A Brief History of
Concurrency in Java

5

A Brief History of Concurrency in Java
• Foundational concurrency support

 Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

See en.wikipedia.org/wiki/Java_version_history#JDK_1.0

e.g., Java threads &
built-in monitor objects
were available in Java 1

https://en.wikipedia.org/wiki/Java_version_history

6

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

7

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

SimpleBlockingBoundedQueue
<Integer> simpleQueue = new
 SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
 new Thread(new Producer<>
 (simpleQueue)),
 new Thread(new Consumer<>
 (simpleQueue))
};

for (Thread thread : threads)
 thread.start();

for (Thread thread : threads)
 thread.join();

Allow multiple threads to
communicate & interact
via a “bounded buffer”

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

8

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

SimpleBlockingBoundedQueue
<Integer> simpleQueue = new
 SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
 new Thread(new Producer<>
 (simpleQueue)),
 new Thread(new Consumer<>
 (simpleQueue))
};

for (Thread thread : threads)
 thread.start();

for (Thread thread : threads)
 thread.join();

Create two Thread
objects that produce &
consume messages via

the bounded buffer

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

9

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#start

Start the producer &
consumer threads

SimpleBlockingBoundedQueue
<Integer> simpleQueue = new
 SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
 new Thread(new Producer<>
 (simpleQueue)),
 new Thread(new Consumer<>
 (simpleQueue))
};

for (Thread thread : threads)
 thread.start();

for (Thread thread : threads)
 thread.join();

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

10

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#join

Barrier that waits for the
producer & consumer

threads to finish running

SimpleBlockingBoundedQueue
<Integer> simpleQueue = new
 SimpleBlockingBoundedQueue<>();

Thread[] threads = new Thread[] {
 new Thread(new Producer<>
 (simpleQueue)),
 new Thread(new Consumer<>
 (simpleQueue))
};

for (Thread thread : threads)
 thread.start();

for (Thread thread : threads)
 thread.join();

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

11

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

class
SimpleBlockingBoundedQueue<E> {
 public E take() ...{
 synchronized(this) {
 while (mList.isEmpty())
 wait();

 notifyAll();

 return mList.poll();
 }
 }

Demonstrates Java’s
built-in monitor object

mutual exclusion &
coordination primitives

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

12

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

class
SimpleBlockingBoundedQueue<E> {
 public E take() ...{
 synchronized(this) {
 while (mList.isEmpty())
 wait();

 notifyAll();

 return mList.poll();
 }
 }

Ensure mutually exclusive
access to take()’s critical

section via the intrinsic lock

See docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

13

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

class
SimpleBlockingBoundedQueue<E> {
 public E take() ...{
 synchronized(this) {
 while (mList.isEmpty())
 wait();

 notifyAll();

 return mList.poll();
 }
 }

Coordinate interactions
between multiple producer

& consumer threads

See docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

14

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives

class
SimpleBlockingBoundedQueue<E> {
 public E take() ...{
 synchronized(this) {
 while (mList.isEmpty())
 wait();

 notifyAll();

 return mList.poll();
 }
 }

The intrinsic lock is released
after the next item on the
list is removed/returned

See docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html#poll

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

15

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives
• Efficient, but low-level & very

limited in capabilities

16

A Brief History of Concurrency in Java
• Foundational concurrency support
• Focus on basic multi-threading

& synchronization primitives
• Efficient, but low-level & very

limited in capabilities
• Many accidental complexities

See en.wikipedia.org/wiki/No_Silver_Bullet

Accidental complexities arise
from limitations with software
techniques, tools, & methods

https://en.wikipedia.org/wiki/No_Silver_Bullet

17

A Brief History of Concurrency in Java
• Advanced concurrency support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

See en.wikipedia.org/wiki/Java_version_history#J2SE_5.0

e.g., Java executor framework,
advanced synchronizers,

blocking queues, atomics, &
concurrent collections all

became available in Java 5+

https://en.wikipedia.org/wiki/Java_version_history

18

ThreadPoolExecutor

3.take()
4.run()

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”

See en.wikipedia.org/wiki/Task_parallelism

WorkerThreads

execute() run()
runnable

runnableFuture

Future

Future

Future

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

submit()

take()

5.add()

1.submit(task)

6.take()

https://en.wikipedia.org/wiki/Task_parallelism

19

ThreadPoolExecutor

3.take()
4.run()

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• e.g., tasks run concurrently

WorkerThreads

execute() run()
runnable

runnableFuture

Future

Future

Future

Completion
Queue

runnable

WorkQueue

2.offer()

ExecutorCompletionService

submit()

take()

5.add()

1.submit(task)

6.take()

The assumption then was there weren’t many processor cores, e.g., 2 to 4

20

A Brief History of Concurrency in Java

See github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• e.g., tasks run concurrently

ExecutorService executor =
 Executors.newFixedThreadPool
 (numOfBeings,
 mThreadFactory);
...
CyclicBarrier entryBarrier =
 new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
 new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
 executor.execute
 (makeBeingRunnable(i,
 entryBarrier,
 exitBarrier));

Create a fixed-sized
pool of threads

& coordinate the
starting & stopping
of multiple tasks

that acquire/release
shared resources

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

21

A Brief History of Concurrency in Java

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixedThreadPool

Create a pool of
threads that reuse
a given/fixed # of
threads operating

off of a shared
unbounded queue

• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• e.g., tasks run concurrently

ExecutorService executor =
 Executors.newFixedThreadPool
 (numOfBeings,
 mThreadFactory);
...
CyclicBarrier entryBarrier =
 new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
 new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
 executor.execute
 (makeBeingRunnable(i,
 entryBarrier,
 exitBarrier));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

22

A Brief History of Concurrency in Java

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

This synchronizer
allows a set of

threads to all wait
for each other to
reach a common

barrier point

• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• e.g., tasks run concurrently

ExecutorService executor =
 Executors.newFixedThreadPool
 (numOfBeings,
 mThreadFactory);
...
CyclicBarrier entryBarrier =
 new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
 new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
 executor.execute
 (makeBeingRunnable(i,
 entryBarrier,
 exitBarrier));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

23

A Brief History of Concurrency in Java

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

This synchronizer
allows one or more
threads to wait for
the completion of a
set of operations
being performed
in other threads

• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• e.g., tasks run concurrently

ExecutorService executor =
 Executors.newFixedThreadPool
 (numOfBeings,
 mThreadFactory);
...
CyclicBarrier entryBarrier =
 new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
 new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
 executor.execute
 (makeBeingRunnable(i,
 entryBarrier,
 exitBarrier));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

24

A Brief History of Concurrency in Java

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute

Executes the given
command at some
time in the future
in the fixed-size
pool of threads

• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• e.g., tasks run concurrently

ExecutorService executor =
 Executors.newFixedThreadPool
 (numOfBeings,
 mThreadFactory);
...
CyclicBarrier entryBarrier =
 new CyclicBarrier(numOfBeings+1);

CountDownLatch exitBarrier =
 new CountDownLatch(numOfBeings);

for (int i=0; i < beingCount; ++i)
 executor.execute
 (makeBeingRunnable(i,
 entryBarrier,
 exitBarrier));

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

25

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• Feature-rich & optimized, but also

tedious & error-prone to program

See flylib.com/books/en/2.558.1/risks_of_threads.html

https://flylib.com/books/en/2.558.1/risks_of_threads.html

26

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• Feature-rich & optimized, but also

tedious & error-prone to program
• & scales poorly for modern

multi-core processors

See www.infoq.com/presentations/parallel-java-se-8

http://www.infoq.com/presentations/parallel-java-se-8

27

A Brief History of Concurrency in Java
• Advanced concurrency support
• Focus on coarse-grained “task

parallelism”
• Feature-rich & optimized, but also

tedious & error-prone to program
• & scales poorly for modern

multi-core processors

See upcoming lesson on “How Parallel Programs Are Developed in Java”

Motivates Java’s parallel, async, &
reactive programming frameworks

28

End of the History of
Concurrency Support in Java

29

1.Which of the following were concurrency features added in
Java 5?
a. Shared objects
b.Advanced synchronizers
c. Message passing
d. Blocking queues
e. Executor framework
f. Mutual exclusion
g.Concurrent collections

Discussion Questions

