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You may already know some of this history!




A Brief History of
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A Brief History of Concurrency in Java
» Foundational concurrency support

Applications

Additional Frameworks & Languages

Threading & Synchronization Packages

Java/INI

e.g., Java threads &
built-in monitor objects
were available in Java 1

Java Execution Environment (e.g., JVM)

System Libraries

C++/C

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#JDK 1.0



https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Concurrency in Java

» Foundational concurrency support

 Focus on basic multi-threading
& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency



https://docs.oracle.com/javase/tutorial/essential/concurrency

A Brief History of Concurrency in Java

 Foundational concurrency support SimpleBlockingBoundedQueue

 Focus on basic multi-threading

<Integer> simpleQueue = new
SimpleBlockingBoundedQueue<> () ;

& synchronization primitives
Thread[] threads = new Thread|[] {
new Thread (new Producer<>

Allow multiple threads to
communicate & interact
via @ "bounded buffer”

(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

for (Thread thread : threads)
thread.start () ;

for (Thread thread : threads)
thread. join() ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/SimpleBlockingQueue



https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>

(simpleQueue)),
//////////;ew Thread (new Consumer<>
Create two Thread (simpleQueue))

objects that produce & Y
consume messages via |
the bounded buffer for (Thread thread : threads)

thread.start () ;

for (Thread thread : threads)
thread. join() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html



https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>
(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

Start the producer &
consumer threads

\\\\\\\\For (Thread thread : threads)
thread.start() ;

for (Thread thread : threads)
thread. join() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#start



https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>
(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

for (Thread thread : threads)
thread.start () ;

Barrier that waits for the

t/,fmfz;ucff /‘f‘ q%nsuméfr Nor (Thread thread : threads)
reads to finish running thread.join() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#join



https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java

 Foundational concurrency support class

. i - : SimpleBlockingBoundedQueue<E> {
Focus on ba_15|c_mult| _th_rgadmg public E take() ...{
& synchronization primitives synchronized (this) {

while (mList.isEmpty())

wait();
Demonstrates Javas _
fyAll () ;
built-in monitor object / notifyall ()

mutual exclusion &
coordination primitives }

}

return mList.poll () ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/SimpleBlockingQueue



https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency in Java

 Foundational concurrency support class

. : - . SimpleBlockingBoundedQueue<E> {
Focus on ba_15|c_mult| _th_rgadmg public E take() ...{
& synchronization primitives synchronized (this) {

while (mList.isEmpty())
Ensure mutually exclusive wait();

access to take()s critical _
section via the intrinsic lock notifyAll();

return mList.poll () ;

}
}

See docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html



https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

A Brief History of Concurrency in Java

 Foundational concurrency support class

: : . SimpleBlockingBoundedQueue<E> {
» Focus on basic multi-threading public E take() ...{
& synchronization primitives synchronized (this) {
while (mList.isEmpty())
wait () ;

Coordinate interactions /Dti fyAll();

between multiple producer

& consumer threads return mList.poll();
}
}

See docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html



https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

A Brief History of Concurrency in Java

 Foundational concurrency support class
i : - SimpleBlockingB ded <E>
+ Focus on basic multi-threading ~ S*"PreBlockingBoundedQueue<i> {

e T public E take() ...{
& synchronization primitives synchronized (this) {
while (mList.isEmpty())
wait () ;
The intrinsic lock is released notifyAll () ;

after the next item on the —— _
list is removed/returned return mList.poll();
}

}

See docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html#poll



https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

A Brief History of Concurrency in Java

» Foundational concurrency support

« Efficient, but low-level & very
limited in capabilities

15



A Brief History of Concurrency in Java

» Foundational concurrency support

« Efficient, but low-level & very

limited in capa

« Many accidental complexities

bilities
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Accidental complexities arise
from limitations with software
technigues, tools, & methods

See en.wikipedia.org/wiki/No Silver Bullet



https://en.wikipedia.org/wiki/No_Silver_Bullet

A Brief History of Concurrency in Java
» Advanced concurrency support

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Java Execution Environment (e.g., JVM)

System Libraries

e.g., Java executor framework,
advanced synchronizers,
blocking queues, atomics, &
concurrent collections all
became available in Java 5+

C++/C

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#J2SE 5.0



https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Concurrency in Java

» Advanced concurrency support
» Focus on coarse-grained “task

parallelism”

1.submit (task)

ExecutorCompletionService

runnable

submit()

%%é%

/ 6.take ()

Completion
Queue

Future

Future

Future

execute() run ()
N\
2.o0ffer() QZ’—§\>
3 -
runnable : 9%
WorkQueue S~ WorkerThreads
\
3.take()
5.add() 4.run()
/ runnable
ThreadPoolExecutor

See en.wikipedia.org/wiki/Task parallelism



https://en.wikipedia.org/wiki/Task_parallelism

A Brief History of Concurrency in Java

» Advanced concurrency support ExecutorCompletionService
» Focus on coarse-grained “task |

pa rallelism” execute() run ()

runnable N\ m
* e.g., tasks run concurrently 2.o0ffer ()
A

2SS L -
submit() runnable g gegeg

- | ] WorkerThread
1l.submit (task) take() WorkQueue Qr reads

— / '\Completion 3.take()
Queue 5.add () 4.run()
egeéegeé - 6. take ()
; Future / runnable

Future

Future ThreadPoolExecutor

Future I

The assumption then was there weren’t many processor cores, e.g., 2 to 4




A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on coarse-grained “task Executors .1{1ewF1xedThreadPool
. (numOfBeings,
parallelism mThreadFactory) ;

 e.g., tasks run concurrently .o
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

S fq o Create a fixed-sized _ _

pool of threads CountDownlLatch exitBarrier =
f 3\—@ 5 e (e new CountDownLatch (numOfBeings) ;
L § | |STEUNG ESIODPING | £or (int i=0; i < beingCount; ++i)

of mu/t/,z_)/e tasks executor . execute
A that acquire/release (makeBeingRunnable (i,
T shared resources entryBarrier,
IR exitBarrier)) ;

See github.com/douglascraigschmidt/Livel essons/tree/master/PalantiriManagerApplication



https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on coarse-grained “task Executors .r_1ewF1xedThreadPool
_ (numOfBeings,
parallelism mThreadFactory) ;

 e.g., tasks run concurrently .o
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

-

ﬂ i ) Create a pool of CountDownLatch exitBarrier =

— & thrqads l'/_7c?l' reuse new CountDownLatch (numOfBeings) ;
£ £@ a given/fixed # of

3 threads operating for (int i=0; i < beingCount; ++i)

= off of a shared executor.execute
R | unbounded queue (makeBeingRunnable (i,
R entryBarrier,
RN exitBarrier)) ;

See docs.orade.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixed ThreadPool



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on coarse-grained “task Executors .r.lewFJ.xedThreadPool
. (numOfBeings,
parallelism mThreadFactory) ;

 e.g., tasks run concurrently .o
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+1l) ;

|
i© This synchronizer CountDownlLatch exitBarrier =
A allows a set of new CountDownLatch (numOfBeings) ;
1 9 49 .
> o7 threads to all wait
ﬁ for each other to for (int i=0; i < beingCount; ++i)
T reach a common executor.execute
. barrier point (makeBeingRunnable (i,
entryBarrier,

RN exitBarrier)) ;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on coarse-grained “task Executors .r.lewFJ.xedThreadPool
. (numOfBeings,
parallelism mThreadFactory) ;

* e.g., tasks run concurrently
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

| S - -
i© This synchronizer CountDownLatch exitBarrier =
g e allows one or more| _— ney CountDownLatch (numOfBeings) ;
£ :
| S threads to wait for
. TS the completion of a| for (int i=0; i < beingCount; ++i)
set of operations executor.execute
4 being performed (makeBeingRunnable (i,
" in other threads entryBarrier,
RN exitBarrier)) ;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
: W E .newFixedTh Pool
« Focus on coarse-grained “task xecutors . newFixedThreadPoo
. (numOfBeings,
parallelism mThreadFactory) ;

* e.g., tasks run concurrently
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

R
ﬂ i @ Executes the given CountDownLatch exitBarrier =
Qkfgﬁ@ command at some new CountDownLatch (numOfBeings) ;
r e time in the future
g in the fixed-size for (int i=0; i < beingCount; ++i)
R pool of threads | —— executor.execute
o (makeBeingRunnable (i,
B e entryBarrier,
e .« | exitBarrier)) ;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

A Brief History of Concurrency |n Java

« Advanced concurrency support

« Feature-rich & optimized, but also
tedious & error-prone to program

See flylib.com/books/en/2.558.1/risks of threads.html



https://flylib.com/books/en/2.558.1/risks_of_threads.html

A Brief History of Concurrency in Java

« Advanced concurrency support 60 -

50 -

» Feature-rich & optimized, but also
tedious & error-prone to program

« & scales poorly for modern
multi-core processors
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See www.infog.com/presentations/parallel-java-se-8



http://www.infoq.com/presentations/parallel-java-se-8

A Brief History of Concurrency in Java
» Advanced concurrency support Completable Futures
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See upcoming lesson on " How Parallel Programs Are Developed in Java’




End of the History of
Concurrency Support in Java
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Discussion Questions

1. Which of the following were concurrency features added in
Java 5?

a. Shared objects

b. Advanced synchronizers
C. Message passing

d. Blocking queues

€. Executor framework

f. Mutual exclusion

g. Concurrent collections

29



