The History of Goncurrency

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Learn Java, COI’]CUI‘Ee ncy hIStOI‘y Java Execution Environment (e.g., JVM)

C++/C

C

JAVA
HISTORY

System Libraries

Operating System Kernel

Learning Objectives in this Part of the Lesson

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Learn Java concurrency hIStOI‘y Java Execution Environment (e.g., JVM)

/\
Z
O
=
Z

C C++/C—

System Libraries

Operating System Kernel

You may already know some of this history!

A Brief History of
Concurrency in Java

A Brief History of Concurrency in Java
» Foundational concurrency support

Applications

Additional Frameworks & Languages

Threading & Synchronization Packages

Java/INI

e.g., Java threads &
built-in monitor objects
were available in Java 1

Java Execution Environment (e.g., JVM)

System Libraries

C++/C

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#JDK 1.0

https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Concurrency in Java

» Foundational concurrency support

 Focus on basic multi-threading
& synchronization primitives

See docs.oracle.com/javase/tutorial/essential/concurrency

https://docs.oracle.com/javase/tutorial/essential/concurrency

A Brief History of Concurrency in Java

 Foundational concurrency support SimpleBlockingBoundedQueue

 Focus on basic multi-threading

<Integer> simpleQueue = new
SimpleBlockingBoundedQueue<> () ;

& synchronization primitives
Thread[] threads = new Thread|[] {
new Thread (new Producer<>

Allow multiple threads to
communicate & interact
via @ "bounded buffer”

(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

for (Thread thread : threads)
thread.start () ;

for (Thread thread : threads)
thread. join() ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>

(simpleQueue)),
//////////;ew Thread (new Consumer<>
Create two Thread (simpleQueue))

objects that produce & Y
consume messages via |
the bounded buffer for (Thread thread : threads)

thread.start () ;

for (Thread thread : threads)
thread. join() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>
(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

Start the producer &
consumer threads

\\\\\\\\For (Thread thread : threads)
thread.start() ;

for (Thread thread : threads)
thread. join() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#start

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java
 Foundational concurrency support SimpleBlockingBoundedQueue

- Focus on basic multi-threading ~ <T"teger> simpleQueue = new
o T g SimpleBlockingBoundedQueue<> () ;
& synchronization primitives

Thread[] threads = new Thread|[] {
new Thread (new Producer<>
(simpleQueue)),
new Thread (new Consumer<>
(simpleQueue))

};

for (Thread thread : threads)
thread.start () ;

Barrier that waits for the

t/,fmfz;ucff /‘f‘ q%nsuméfr Nor (Thread thread : threads)
reads to finish running thread.join() ;

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html#join

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

A Brief History of Concurrency in Java

 Foundational concurrency support class

. i - : SimpleBlockingBoundedQueue<E> {
Focus on ba_15|c_mult| _th_rgadmg public E take() ...{
& synchronization primitives synchronized (this) {

while (mList.isEmpty())

wait();
Demonstrates Javas _
fyAll () ;
built-in monitor object / notifyall ()

mutual exclusion &
coordination primitives }

}

return mList.poll () ;

See github.com/douglascraigschmidt/LivelLessons/tree/master/SimpleBlockingQueue

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

A Brief History of Concurrency in Java

 Foundational concurrency support class

. : - . SimpleBlockingBoundedQueue<E> {
Focus on ba_15|c_mult| _th_rgadmg public E take() ...{
& synchronization primitives synchronized (this) {

while (mList.isEmpty())
Ensure mutually exclusive wait();

access to take()s critical _
section via the intrinsic lock notifyAll();

return mList.poll () ;

}
}

See docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html

A Brief History of Concurrency in Java

 Foundational concurrency support class

: : . SimpleBlockingBoundedQueue<E> {
» Focus on basic multi-threading public E take() ...{
& synchronization primitives synchronized (this) {
while (mList.isEmpty())
wait () ;

Coordinate interactions /Dti fyAll();

between multiple producer

& consumer threads return mList.poll();
}
}

See docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/guardmeth.html

A Brief History of Concurrency in Java

 Foundational concurrency support class
i : - SimpleBlockingB ded <E>
+ Focus on basic multi-threading ~ S*"PreBlockingBoundedQueue<i> {

e T public E take() ...{
& synchronization primitives synchronized (this) {
while (mList.isEmpty())
wait () ;
The intrinsic lock is released notifyAll () ;

after the next item on the —— _
list is removed/returned return mList.poll();
}

}

See docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html#poll

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

A Brief History of Concurrency in Java

» Foundational concurrency support

« Efficient, but low-level & very
limited in capabilities

15

A Brief History of Concurrency in Java

» Foundational concurrency support

« Efficient, but low-level & very

limited in capa

« Many accidental complexities

bilities

CAUTION
FLOOR | W
SLIPPERY | | &
WHEN WET

:

T~

Accidental complexities arise
from limitations with software
technigues, tools, & methods

See en.wikipedia.org/wiki/No Silver Bullet

https://en.wikipedia.org/wiki/No_Silver_Bullet

A Brief History of Concurrency in Java
» Advanced concurrency support

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Java Execution Environment (e.g., JVM)

System Libraries

e.g., Java executor framework,
advanced synchronizers,
blocking queues, atomics, &
concurrent collections all
became available in Java 5+

C++/C

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#J2SE 5.0

https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Concurrency in Java

» Advanced concurrency support
» Focus on coarse-grained “task

parallelism”

1.submit (task)

ExecutorCompletionService

runnable

submit()

%%é%

/ 6.take ()

Completion
Queue

Future

Future

Future

execute() run ()
N\
2.o0ffer() QZ’—§\>
3 -
runnable : 9%
WorkQueue S~ WorkerThreads
\
3.take()
5.add() 4.run()
/ runnable
ThreadPoolExecutor

See en.wikipedia.org/wiki/Task parallelism

https://en.wikipedia.org/wiki/Task_parallelism

A Brief History of Concurrency in Java

» Advanced concurrency support ExecutorCompletionService
» Focus on coarse-grained “task |

pa rallelism” execute() run ()

runnable N\ m
* e.g., tasks run concurrently 2.o0ffer ()
A

2SS L -
submit() runnable g gegeg

- |] WorkerThread
1l.submit (task) take() WorkQueue Qr reads

— / '\Completion 3.take()
Queue 5.add () 4.run()
egeéegeé - 6. take ()
; Future / runnable

Future

Future ThreadPoolExecutor

Future I

The assumption then was there weren’t many processor cores, e.g., 2 to 4

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on coarse-grained “task Executors .1{1ewF1xedThreadPool
. (numOfBeings,
parallelism mThreadFactory) ;

 e.g., tasks run concurrently .o
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

S fq o Create a fixed-sized _ _

pool of threads CountDownlLatch exitBarrier =
f 3\—@ 5 e (e new CountDownLatch (numOfBeings) ;
L § | |STEUNG ESIODPING | £or (int i=0; i < beingCount; ++i)

of mu/t/,z_)/e tasks executor . execute
A that acquire/release (makeBeingRunnable (i,
T shared resources entryBarrier,
IR exitBarrier)) ;

See github.com/douglascraigschmidt/Livel essons/tree/master/PalantiriManagerApplication

https://github.com/douglascraigschmidt/LiveLessons/tree/master/PalantiriManagerApplication

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on coarse-grained “task Executors .r_1ewF1xedThreadPool
_ (numOfBeings,
parallelism mThreadFactory) ;

 e.g., tasks run concurrently .o
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

-

ﬂ i) Create a pool of CountDownLatch exitBarrier =

— & thrqads l'/_7c?l' reuse new CountDownLatch (numOfBeings) ;
£ £@ a given/fixed # of

3 threads operating for (int i=0; i < beingCount; ++i)

= off of a shared executor.execute
R | unbounded queue (makeBeingRunnable (i,
R entryBarrier,
RN exitBarrier)) ;

See docs.orade.com/javase/8/docs/api/java/util/concurrent/Executors.html#newFixed ThreadPool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executors.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on coarse-grained “task Executors .r.lewFJ.xedThreadPool
. (numOfBeings,
parallelism mThreadFactory) ;

 e.g., tasks run concurrently .o
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+1l) ;

|
i© This synchronizer CountDownlLatch exitBarrier =
A allows a set of new CountDownLatch (numOfBeings) ;
1 9 49 .
> o7 threads to all wait
ﬁ for each other to for (int i=0; i < beingCount; ++i)
T reach a common executor.execute
. barrier point (makeBeingRunnable (i,
entryBarrier,

RN exitBarrier)) ;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CyclicBarrier.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
- Focus on coarse-grained “task Executors .r.lewFJ.xedThreadPool
. (numOfBeings,
parallelism mThreadFactory) ;

* e.g., tasks run concurrently
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

| S - -
i© This synchronizer CountDownLatch exitBarrier =
g e allows one or more| _— ney CountDownLatch (numOfBeings) ;
£ :
| S threads to wait for
. TS the completion of a| for (int i=0; i < beingCount; ++i)
set of operations executor.execute
4 being performed (makeBeingRunnable (i,
" in other threads entryBarrier,
RN exitBarrier)) ;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CountDownLatch.html

A Brief History of Concurrency in Java

« Advanced concurrency support ExecutorService executor =
: W E .newFixedTh Pool
« Focus on coarse-grained “task xecutors . newFixedThreadPoo
. (numOfBeings,
parallelism mThreadFactory) ;

* e.g., tasks run concurrently
CyclicBarrier entryBarrier =

new CyclicBarrier (numOfBeings+l) ;

R
ﬂ i @ Executes the given CountDownLatch exitBarrier =
Qkfgﬁ@ command at some new CountDownLatch (numOfBeings) ;
r e time in the future
g in the fixed-size for (int i=0; i < beingCount; ++i)
R pool of threads | —— executor.execute
o (makeBeingRunnable (i,
B e entryBarrier,
e .« | exitBarrier)) ;

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html#execute

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

A Brief History of Concurrency |n Java

« Advanced concurrency support

« Feature-rich & optimized, but also
tedious & error-prone to program

See flylib.com/books/en/2.558.1/risks of threads.html

https://flylib.com/books/en/2.558.1/risks_of_threads.html

A Brief History of Concurrency in Java

« Advanced concurrency support 60 -

50 -

» Feature-rich & optimized, but also
tedious & error-prone to program

« & scales poorly for modern
multi-core processors

40 -

30 -

23] =

10 - 4
2

0

¢ Actual

- Predicted

2004 2006 2009 2012

2014

2017

See www.infog.com/presentations/parallel-java-se-8

http://www.infoq.com/presentations/parallel-java-se-8

A Brief History of Concurrency in Java
» Advanced concurrency support Completable Futures

/page\ = 8 ‘

supplyAsync
(getstartPage())

/=

» Feature-rich & optimized, but also o ertinnine ‘““ypeA
tedious & error-prone to program thentpply (st size) (P29°))
« & scales poorly for modern Parallel Streams A\, / B L ctive streams
multi-core processors | _LLLLL L Cntegerom | @-0-0-9-0-0-0—1>
|' . vobse'rveOr:D)v — |

@000 0000l

map({O--->0})

RV d I i
| fiter(notthis::uriCached) |
RV I

|

E, map(this:.downloadimage)

Motivates Javas parallel, async, &| + JI1 & i

reactive programming frameworks| | ﬂanap{ﬂi&'-'aPPﬁyf”fefS) |

: eeeeeee On(b)
ooy bl

@00 ea00l-

subscribeOn()

800800l

See upcoming lesson on " How Parallel Programs Are Developed in Java’

End of the History of
Concurrency Support in Java

28

Discussion Questions

1. Which of the following were concurrency features added in
Java 5?

a. Shared objects

b. Advanced synchronizers
C. Message passing

d. Blocking queues

€. Executor framework

f. Mutual exclusion

g. Concurrent collections

29

