
Overview of Java Concurrency Hazards

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the meaning of key

concurrent programming concepts
• Recognize how Java supports

concurrent programming concepts
• Be aware of common concurrency

hazards faced by Java programmers

3

Learning Objectives in this Part of the Lesson
• Understand the meaning of key

concurrent programming concepts
• Recognize how Java supports

concurrent programming concepts
• Be aware of common concurrency

hazards faced by Java programmers
• Including race conditions &

memory inconsistencies

We also outline how Java synchronizers can address those hazards

4

Learning Objectives in this Part of the Lesson
• Understand the meaning of key

concurrent programming concepts
• Recognize how Java supports

concurrent programming concepts
• Be aware of common concurrency

hazards faced by Java programmers
• Including race conditions &

memory inconsistencies
• We also discuss a hazard stemming

from synchronizers themselves!

We also outline how to address that hazard

5

Learning Objectives in this Part of the Lesson
• Understand the meaning of key

concurrent programming concepts
• Recognize how Java supports

concurrent programming concepts
• Be aware of common concurrency

hazards faced by Java programmers
• Including race conditions &

memory inconsistencies
• We also discuss a hazard stemming

from synchronizers themselves!
• e.g., deadlock

We also outline how to address that hazard

T2T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

L1

L2

6

Common Concurrent
Programming Hazards

7

• Java shared objects & message passing
mechanisms help share resources safely
& avoid concurrency hazards, e.g.
• Race conditions
• Memory inconsistencies

Common Concurrent Programming Hazards & Solutions

See en.wikipedia.org/wiki/Thread_safety

https://en.wikipedia.org/wiki/Thread_safety

8See en.wikipedia.org/wiki/Race_condition#Software

• Race conditions
• Occur when a program depends on

the sequence or timing of threads
to operate properly

Common Concurrent Programming Hazards & Solutions

write()

read()

https://en.wikipedia.org/wiki/Race_condition

9

Common Concurrent Programming Hazards & Solutions

See github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

This program induces race
conditions between producer &
consumer threads accessing an
unsynchronized bounded queue

write()

read()

• Race conditions
• Occur when a program depends on

the sequence or timing of threads
to operate properly
class BuggyQueue<E> {
 List<E> l = new ArrayList<>();
 public void offer(E e) {
 if (!isFull())
 { l.add(e); return true; }
 else return false;
 }
 public E poll() {
 return !isEmpty() ? l.remove(0) : null;
 } ...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

10

class BuggyQueue<E> {
 List<E> l = new ArrayList<>();
 public void offer(E e) {
 if (!isFull())
 { l.add(e); return true; }
 else return false;
 }
 public E poll() {
 return !isEmpty() ? l.remove(0) : null;
 } ...

Common Concurrent Programming Hazards & Solutions

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

Chaos & insanity
may result if offer()
& poll() are called

concurrently!

write()

read()

• Race conditions
• Occur when a program depends on

the sequence or timing of threads
to operate properly

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

11

class BuggyQueue<E> {
 List<E> l = new ArrayList<>();
 public synchronized void offer(E e) {
 if (!isFull())
 { l.add(e); return true; }
 else return false;
 }
 public synchronized E poll() {
 return !isEmpty() ? l.remove(0) : null;
 } ...

Common Concurrent Programming Hazards & Solutions

e.g., synchronized statement/method, ReentrantLock, StampedLock, etc.

write()

read()

• Race conditions
• Occur when a program depends on

the sequence or timing of threads
to operate properly

Avoid via Java
mutual exclusion

mechanisms

12

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have

inconsistent views of what should
be the same data

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

13

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have

inconsistent views of what should
be the same data

class LoopMayNeverEnd {
 boolean mDone;

 void work() {
 // Thread T2 read
 while (!mDone) {
 // do work
 }
 }

 void stopWork() {
 mDone = true;
 // Thread T1 write
 }
 ...

14

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have

inconsistent views of what should
be the same data

class LoopMayNeverEnd {
 boolean mDone;

 void work() {
 // Thread T2 read
 while (!mDone) {
 // do work
 }
 }

 void stopWork() {
 mDone = true;
 // Thread T1 write
 }
 ...

Unsynchronized & mutable
shared data (boolean fields are
initialized to false by default)

See howtodoinjava.com/java/keywords/java-boolean

https://howtodoinjava.com/java/keywords/java-boolean

15

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have

inconsistent views of what should
be the same data

class LoopMayNeverEnd {
 boolean mDone;

 void work() {
 // Thread T2 read
 while (!mDone) {
 // do work
 }
 }

 void stopWork() {
 mDone = true;
 // Thread T1 write
 }
 ...

T2 may never stop, even
after T1 sets mDone to true

16

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have

inconsistent views of what should
be the same data

class LoopMayNeverEnd {
 volatile boolean mDone;

 void work() {
 // Thread T2 read
 while (!mDone) {
 // do work
 }
 }

 void stopWork() {
 mDone = true;
 // Thread T1 write
 }
 ...

Avoided via Java mechanisms
that ensure atomic operations

e.g., volatile, VarHandle, AtomicBoolean, AtomicInteger, AtomicLock, etc.

17

How Synchronizers
Cause Concurrent

Programming Hazards

18

• Ironically, synchronizers can also
enable concurrency hazards, e.g.
• Deadlock

How Synchronizers Cause Concurrent Programming Hazards

19

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads

are waiting for the other(s) to finish,
& thus none ever do

T2T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

L1

L2

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock

20See www.computerworld.com/article/2585107/the-deadly-embrace.html

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads

are waiting for the other(s) to finish,
& thus none ever do

T2T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

L1

L2

T2 & T1 will be stuck
in a “deadly embrace”

http://www.computerworld.com/article/2585107/the-deadly-embrace.html

21

public void method1() {
 synchronized (String.class) {
 synchronized (Integer.class) { ... }
 }
}
public void method2() {
 synchronized (Integer.class) {
 synchronized (String.class) { ... }
 }
}

See stackoverflow.com/a/14555496

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads

are waiting for the other(s) to finish,
& thus none ever do

Deadlock will likely occur
if method1() & method2()
are called from thread T1
& thread T2 concurrently

https://stackoverflow.com/a/14555496

22

public void method1() {
 synchronized (Integer.class) {
 synchronized (String.class) { ... }
 }
}
public void method2() {
 synchronized (Integer.class) {
 synchronized (String.class) { ... }
 }
}

See docs.oracle.com/cd/E19455-01/806-5257/6je9h0347/index.html

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads

are waiting for the other(s) to finish,
& thus none ever do

Deadlock can be avoided
by always acquiring locks

in the same order!

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h0347/index.html

23

void transfer(SimpleQueue<String> src,
 SimpleQueue<String> dest)... {
 synchronized(src) {
 synchronized(dest) {
 while(!src.isEmpty())
 dest.put(src.take());
 }
 }
}

See github.com/douglascraigschmidt/LiveLessons/tree/master/DeadlockQueue

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads

are waiting for the other(s) to finish,
& thus none ever do

This program shows how deadlock
may occur when transfer() is called

concurrently from thread T1 & thread
T2 with the src & dest params swapped

https://github.com/douglascraigschmidt/LiveLessons/tree/master/DeadlockQueue

24

End of Overview Java
Concurrency Hazards

25

1. Which of the following is NOT mentioned as a learning
objective in the presentation on Java Concurrency Hazards?
a. Understand the meaning of key concurrent programming

concepts
b. Recognize how Java supports concurrent programming

concepts
c. Learn about Java's database capabilities
d. Be aware of common concurrency hazards faced by Java

programmers

Discussion Questions

26

2. Which of the following is NOT a concurrency hazard
in Java as mentioned in the presentation?
a.Race conditions
b.Memory inconsistencies
c.Deadlocks
d.Shared objects

Discussion Questions

