are Developed in Java (Part 1)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize how Java supports =5 g =
concurrent programming concepts

Learning Objectives in this Part of the Lesson

» Recognize how Java supports
concurrent programming concepts, e.g.

« Thread objects

¢ % Thread
currentThread() Thread
getPriority() int
interrupt() void
interrupted() boolean
isIinterrupted() boolean
join() void
ofPlatform() OfPlatform
ofVirtual() OfVirtual
run() void
setDaemon(boolean) void
setPriority(int) void
sleep(long) void
start() void

startVirtualThread(Runnable) Thread

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Learning Objectives in this Part of the Lesson

Recognize how Java supports
concurrent programming concepts, e.g.

« Thread objects

Java threads underwent
major changes as part of
Project Loom & Java 19+

¢ % Thread
currentThread() Thread
getPriority() int
interrupt() void
interrupted() boolean
isIinterrupted() boolean
join() void
ofPlatform() OfPlatform
ofVirtual() OfVirtual
run() void
setDaemon(boolean) void
setPriority(int) void
sleep(long) void
start() void

startVirtualThread(Runnable) Thread

See wiki.openijdk.java.net/display/loom/Main

https://wiki.openjdk.java.net/display/loom/Main

An Overview of
Java Threads

An Overview of Java Threads

« A Java Thread is an object

Class Thread

java.lang.Object
java.lang.Thread

All Implemented Interfaces:

Runnable

Direct Known Subclasses:
ForkJoinWorkerThread

public class Thread
extends Object
implements Runnable

A thread is a thread of execution in a program. The Java Virtual Machine allows an
application to have multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to

threads with lower priority. Each thread may or may not also be marked as a daemon.
When code running in some thread creates a new Thread object, the new thread has its
priority initially set equal to the priority of the creating thread, and is a daemon thread
if and only if the creating thread is a daemon.

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

An Overview of Java Threads

* A Java Thread is an object, e.g. ¢« Thread

« It therefore contains methods m % currentThread() Thread

& (internal) fields ™ = getPriority() nt

. m interrupt() void
public class Thread :

) m ‘i interrupted() boolean

implements Runnable { m ‘& isInterrupted() boolean

prJ:.vate \.rolatil.l.e c.:har namel[]; B join() void

private 1int priority; m u ofPlatform() OfPlatform

private boolean daemon = false; m w ofVirtual() OfVirtual

private Runnable target; m % run() void

ThreadLocal.ThreadLocalMap m w setDaemon(boolean) void

threadLocals = null; m % setPriority(int) void

private long stackSize; m u sleep(long) void

private long tid; m ‘% start() void

m ‘= startVirtualThread(Runnable) Thread

See blog.jamesdbloom.com/JVMInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

An Overview of Java Threads

* A Java Thread is an object, e.g.
It therefore contains methods Thread

& (internal) fields Program Counter

Stack Native Stack

} LY

\ /
\ /

Historically each Java Thread had its own unigque
/d, name, priority, runtime stack, thread-local
storage, instruction pointer, & other registers, etc.

See blog.jamesdbloom.com/JVMInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

An Overview of Java Threads

* A Java Thread is an object, e.g.

It therefore contains methods
& (internal) fields

 Traditional Java Thread
objects are now called
“platform threads”

Platform threads

Thread supports the creation of platform threads that are typically mapped 1:1 to kernel threads
scheduled by the operating system. Platform threads will usually have a large stack and other resources
that are maintained by the operating system. Platforms threads are suitable for executing all types of
tasks but may be a limited resource.

Platform threads are designated daemon or non-daemon threads. When the Java virtual machine starts
up, there is usually one non-daemon thread (the thread that typically calls the application's main
method). The Java virtual machine terminates when all started non-daemon threads have terminated.
Unstarted daemon threads do not prevent the Java virtual machine from terminating. The Java virtual
machine can also be terminated by invoking the Runtime.exit(int) method, in which case it will
terminate even if there are non-daemon threads still running.

In addition to the daemon status, platform threads have a thread priority and are members of a thread
group.

Platform threads get an automatically generated thread name by default.

Virtual threads

Thread also supports the creation of virtual threads. Virtual threads are typically user-mode threads
scheduled by the Java virtual machine rather than the operating system. Virtual threads will typically
require few resources and a single Java virtual machine may support millions of virtual threads. Virtual
threads are suitable for executing tasks that spend most of the time blocked, often waiting for I/O
operations to complete. Virtual threads are not intended for long running CPU intensive operations.

Virtual threads typically employ a small set of platform threads are use as carrier threads. Locking and
I/O operations are the scheduling points where a carrier thread is re-scheduled from one virtual thread
to another. Code executing in a virtual thread will usually not be aware of the underlying carrier thread,
and in particular, the currentThread() method, to obtain a reference to the current thread, will return
the Thread object for the virtual thread, not the underlying carrier thread.

See docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html

https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/lang/Thread.html

An Overview of Java Threads

* A Java Thread is an object, e.g.

It therefore contains methods
& (internal) fields

« New “virtual threads” are
“lightweight” concurrency
objects

Platform threads

Thread supports the creation of platform threads that are typically mapped 1:1 to kernel threads
scheduled by the operating system. Platform threads will usually have a large stack and other resources
that are maintained by the operating system. Platforms threads are suitable for executing all types of
tasks but may be a limited resource.

Platform threads are designated daemon or non-daemon threads. When the Java virtual machine starts
up, there is usually one non-daemon thread (the thread that typically calls the application's main
method). The Java virtual machine terminates when all started non-daemon threads have terminated.
Unstarted daemon threads do not prevent the Java virtual machine from terminating. The Java virtual
machine can also be terminated by invoking the Runtime.exit(int) method, in which case it will
terminate even if there are non-daemon threads still running.

In addition to the daemon status, platform threads have a thread priority and are members of a thread
group.

Platform threads get an automatically generated thread name by default.

Virtual threads

Thread also supports the creation of virtual threads. Virtual threads are typically user-mode threads
scheduled by the Java virtual machine rather than the operating system. Virtual threads will typically
require few resources and a single Java virtual machine may support millions of virtual threads. Virtual
threads are suitable for executing tasks that spend most of the time blocked, often waiting for I/O

operations to complete. Virtual threads are not intended for long running CPU intensive operations.

Virtual threads typically employ a small set of platform threads are use as carrier threads. Locking and
I/O operations are the scheduling points where a carrier thread is re-scheduled from one virtual thread
to another. Code executing in a virtual thread will usually not be aware of the underlying carrier thread,
and in particular, the currentThread() method, to obtain a reference to the current thread, will return
the Thread object for the virtual thread, not the underlying carrier thread.

See docs.oracle.com/en/java/javase/20/core/virtual-threads.html

https://docs.oracle.com/en/java/javase/20/core/virtual-threads.html

« A Java Thread is an object, e.q.

It therefore contains methods R
& (internal) fields

Java Platform Threads vs. Virtual Threads (Part 1)

Douglas Schmidt * 216 views * 7 months ago

Java Platform Threads vs. Virtual Threads (Part 2)

Douglas Schmidt + 152 views * 7 months ago

Structured Concurrency

| Applying Java Platform Threads & Virtual Threads: Case Study ex1

Douglas Schmidt + 170 views + 7 months ago

Public

Overview of Java Structured Concurrency
22 videos 1,811 views Updated today

S

» Playall >3 shuffle SERIRIIRIZIY | Programming with Java Structured Concurrency

Douglas Schmidt + 162 views + 7 months ago

Douglas Schmidt + 304 views + 7 months ago

This playlist contains videos that describe

and demonstrate structured concurrent ﬁi&t& gm

frameworks now available with Java 19

(and beyond). Structured concurrence is Dom—— Programming with Java TaskPerThreadExecutor
intended to support easy-to-use and high- A i
g 5 — Aschmatvsdorin ste Douglas Schmidt + 133 views * 7 months ago
performance lightweight concurrency = o BN
models on modern Java platforms. Also \Y o

covered in these videos are platform

Th ese to p i CS a re Cove red i n It:rj:j: 1a gn (:a‘::::t:;:)ads b (FF | Applying Java Structured Concurrency: Case Study ex2
: Douglas Schmidt + 181 views « 7 months ago
detail in a sibling course

Programming with Java StructuredTaskScope

Douglas Schmidt + 134 views * 7 months ago

See www.youtube.com/playlist?list=PLZ9NgFYEMxp6-DE4NIIE2K1RBrHfRxK XC

http://www.youtube.com/playlist?list=PLZ9NgFYEMxp6-DE4NiIE2K1RBrfRxK_XC

An Overview of Java Threads

* A Java Thread is an object, e.g.

e It can also be in one of
various “states”

States of traditional
Java (platform) threads

new MyThread()

myThread.start()

wait-time
elapsed

Timed
Waiting

resource
obtained,

Runnable

Blocked

attempt to access
guarded resource

cond.notify(),

cond.notifyAll()

run() cond.wait()

@

Terminated)

run() method
returns

myThread.sleep()
wait(timeout)
join(timeout)

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

An Overview of Java Threads

* A Java Thread is an object, e.g.

e It can also be in one of
various “states”

States of modern
Java virtual threads

afterTer

start——>> NEW
Sta‘ 0 © 2020 Heinz Max Kabutz - All Rights Reserved
v fterYield()
= afterYie
Siaide onPlnnedO YIELDING parkPermit==true
PARKED
fU"CO”t'”UaWyvleldo afterYleIdO /
minate() unpark ,)
RUNNING <—runCont|nuat|on0— RUNNABLE <— / \
afterTe;r:wmateO Wait for afterYield() '/ \
signalAll() I K
> TERMINATED if IparkPermit / PARKING < el l'mpar 0 \‘
parkCarrierThread() f i ,/ !
; Calls park() / Calls unpark()
S I
@ end / Decks '
PINNED Calls park() ockSupport I
/ |
sun.nio.ch J
NioSocketimpl SelChimpl KQueue T

ConsoleStreams DatagramChannellmpl

See blog.rockthejvm.com/ultimate-qguide-to-java-virtual-threads

https://blog.rockthejvm.com/ultimate-guide-to-java-virtual-threads

An Overview of Java Threads

Carrier thread:

* A Java Thread is an object, e.g. =T Tx : . e— : TTTx
Virtual thread 1:
R Waiting Runnable Waiting Blocked R
Virtual thread 2:
R Blocked Waiting R Waiting R
« Java virtual threads are Virtuadthrmad 3
. R Waitin R
multiplexed atop a pool of :
“carrier” (platform) threads /

Blocking operations no longer block the executing thread, which enables the
processing of a large # of requests in parallel with a small # of carrier threads

See www.happycoders.eu/java/virtual-threads

http://www.happycoders.eu/java/virtual-threads

End of Overview of How
Concurrent Programs are
Developed in Java (Part 1)

15

Discussion Questions

a.Which of the following statements are accurate about
Java threads as mentioned in the presentation?

a.A Java Thread is an object

b.Modern Java threads are called "platform threads”

C. Java virtual threads are multiplexed atop a pool of
"carrier” (platform) threads

d.Java threads have not undergone any major
changes since their inception

16

