
The History of Parallelism
Support in Java

Douglas C. Schmidt
 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

JAVA HISTORY

• Learn the history of Java
parallelism from 2010 to 2022
• i.e., fork-join, parallel streams,

completable futures, & reactive
streams frameworks

3

Learning Objectives in this Part of the Lesson
• Learn the history of Java

parallelism from 2010 to 2022
• Understand the evolution of

Java from concurrency to
parallelism

4

A Brief History of
Parallelism in Java

5

A Brief History of Parallelism in Java
• Foundational parallelism support

 Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

See en.wikipedia.org/wiki/Java_version_history#Java_SE_7

e.g., Java fork-join pool
was released in Java 7

https://en.wikipedia.org/wiki/Java_version_history

6

A Brief History of Parallelism in Java
• Foundational parallelism support
• Focus on fine-grained object-

oriented data parallelism

See en.wikipedia.org/wiki/Data_parallelism

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2
fork()

DataSource

fork() fork()

https://en.wikipedia.org/wiki/Data_parallelism

7

A Brief History of Parallelism in Java
• Foundational parallelism support
• Focus on fine-grained object-

oriented data parallelism
• e.g., runs the same task

on different elements of
data by using the “split-
apply-combine” model

See www.jstatsoft.org/article/view/v040i01/v40i01.pdf

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2
fork()

DataSource

fork() fork()

http://www.jstatsoft.org/article/view/v040i01/v40i01.pdf

8See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

A Brief History of Parallelism in Java
• Foundational parallelism support
• Focus on fine-grained object-

oriented data parallelism
• e.g., runs the same task

on different elements of
data by using the “split-
apply-combine” model

List<List<SearchResults>>
 listOfListOfSearchResults =
 ForkJoinPool
 .commonPool()
 .invoke(new
 SearchWithForkJoinTask
 (inputList,
 mPhrasesToFind, ...));

Use a common fork-join pool to search
input strings to locate phrases that
match famous quotes by the Bard

45,000+ phrases

Search Phrases

Input Strings to Search

…

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

9

A Brief History of Parallelism in Java
• Foundational parallelism support
• Focus on fine-grained object-

oriented data parallelism
• Powerful & scalable, but

tedious to program directly

 join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2
fork()

DataSource

fork() fork()

10

A Brief History of Parallelism in Java
• Advanced parallelism support

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

See en.wikipedia.org/wiki/Java_version_history#Java_SE_8

e.g., Java parallel streams
& completable futures
first available in Java 8

https://en.wikipedia.org/wiki/Java_version_history

11

A Brief History of Parallelism in Java
• Advanced parallelism support
• Initial focus on fine-grained

functional programming frame-
works for data parallelism

See en.wikipedia.org/wiki/Data_parallelism

https://en.wikipedia.org/wiki/Data_parallelism

12

A Brief History of Parallelism in Java
• Advanced parallelism support
• Initial focus on fine-grained

functional programming frame-
works for data parallelism

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

Synchronously download images that
aren’t already cached from a list of URLs

& process/store the images in parallel

List<Image> images =
 urls
 .parallelStream()
 .filter(not(this::urlCached))
 .map(this::downloadImage)
 .map(this::applyFilters)
 .reduce(Stream::concat)
 .orElse(Stream.empty())
 .collect(toList());

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

13

A Brief History of Parallelism in Java
• Advanced parallelism support
• Initial focus on fine-grained

functional programming frame-
works for data parallelism &
asynchrony

/page\ =
 supplyAsync
 (getStartPage())

/imgNum2\ = /page\
 .thenComposeAsync
 (crawlHyperLinks
 (page))

/imgNum1\ = /page\
 .thenApplyAsync
 (countImages(page))
 .thenApply(List::size)

/imgNum1\.thenCombine(/imgNum2\,
 (imgNum1, imgNum2) ->
 Integer::sum)

See gist.github.com/staltz/868e7e9bc2a7b8c1f754

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

14

A Brief History of Parallelism in Java
• Advanced parallelism support
• Initial focus on fine-grained

functional programming frame-
works for data parallelism &
asynchrony

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuture1.java

CompletableFuture
 <Stream<Image>>
 resultsFuture = urls
 .stream()
 .map(this::checkUrlCachedAsync)
 .map(this::downloadImageAsync)
 .flatMap(this::applyFiltersAsync)
 .collect(toFuture())
 .thenApply(stream ->
 log(stream.flatMap
 (Optional::stream),
 urls.size()))
 .join();

Combines streams & completable futures
to asynchronously download images that
aren’t already cached from a list of URLs

& process/store the images in parallel

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuture1.java

15

A Brief History of Parallelism in Java
• Advanced parallelism support
• Initial focus on fine-grained

functional programming frame-
works for data parallelism &
asynchrony

• Later focus on pub/sub reactive
streams frameworks

Additional Frameworks & Languages

Applications

Operating System Kernel

System Libraries

Java Execution Environment (e.g., JVM)

Threading & Synchronization PackagesJa
va

/J
NI

C+
+

/C
C

See en.wikipedia.org/wiki/Java_version_history#Java_SE_9

e.g., Java reactive streams made
available in Java 9 have enabled the
RxJava & Project Reactor frameworks

https://en.wikipedia.org/wiki/Java_version_history

16

A Brief History of Parallelism in Java
• Advanced parallelism support
• Initial focus on fine-grained

functional programming frame-
works for data parallelism &
asynchrony

• Later focus on pub/sub reactive
streams frameworks

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamReactor2.java

List<Image> filteredImages
 = Flux
 .fromIterable(urls)
 .parallel()
 .runOn(Schedulers
 .boundedElastic())
 .filter(url -> !urlCached(url))
 .map(this::blockingDownload)
 .flatMap(this::applyFilters)
 .sequential()
 .collectList()
 .block();

Applies Project Reactor reactive streams
to asynchronously download images that
aren’t already cached from a list of URLs

& process/store the images in parallel

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamReactor2.java

17

A Brief History of Parallelism in Java
• Java’s advanced parallelism frameworks

are designed to strike a balance between
productivity & performance

18

A Brief History of Parallelism in Java
• Java’s advanced parallelism frameworks

are designed to strike a balance between
productivity & performance
• However, these frameworks can be

overly prescriptive

19

A Brief History of Parallelism in Java
• Java’s advanced parallelism frameworks

are designed to strike a balance between
productivity & performance
• However, these frameworks can be

overly prescriptive, e.g.
• Abstracting away low-level details

limits fine-grained control over the
parallelization process

20

A Brief History of Parallelism in Java
• Java’s advanced parallelism frameworks

are designed to strike a balance between
productivity & performance
• However, these frameworks can be

overly prescriptive, e.g.
• Abstracting away low-level details

limits fine-grained control over the
parallelization process

• If a problem doesn't fit well into the
constructs provided it may be hard
to implement an efficient solution

21

A Brief History of Parallelism in Java
• Java’s advanced parallelism frameworks

are designed to strike a balance between
productivity & performance
• However, these frameworks can be

overly prescriptive
• There’s also some overhead for task

scheduling, data partitioning, & thread
management

22

The Evolution of Java from
Concurrency to Parallelism

23

• Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

See www.youtube.com/watch?v=NsDE7E8sIdQ

The Evolution of Java from Concurrency to Parallelism

http://www.youtube.com/watch?v=NsDE7E8sIdQ

24See www.infoq.com/presentations/parallel-java-se-8

• Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

His talk explains how modern Java
combines functional programming
with fine-grained data parallelism
to leverage many-core processors

The Evolution of Java from Concurrency to Parallelism

http://www.infoq.com/presentations/parallel-java-se-8

25See www.youtube.com/watch?v=cN_DpYBzKso

• Rob Pike also has a good talk that
explains the differences between
concurrency & parallelism

The Evolution of Java from Concurrency to Parallelism

His talk explains how concurrency
is about dealing with lots of things

at once, whereas parallelism is
about doing lots of things at once

http://www.youtube.com/watch?v=cN_DpYBzKso

26See www.infoq.com/podcasts/java-project-loom

• Likewise, Ron Pressler’s podcast
differentiates concurrency &
parallelism

The Evolution of Java from Concurrency to Parallelism

Parallelism is about cooperating on a
single thing, & concurrency is about

different things competing for resources

https://www.infoq.com/podcasts/java-project-loom

27

End of the History of
Parallelism Support in Java

