The History of Parallelism

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Learn the history of Java L
parallelism from 2010 to 2022 Applications

* i.e., fork-join, parallel streams,
completable futures, & reactive
streams frameworks

7 7 Threading & Synchronization Packages
] Java Execution Environment (e.g., JVM)

System Libraries

Additional Frameworks & Languages

Java/INI

C++/C

C

Operating System Kernel
AR s,

JAVA HISTORY

Learning Objectives in t

« Understand the evolution of
Java from concurrency to
parallelism

nis Part of the Lesson
60 -
50 -
40 - ¢ Actual
- Predicted
30 -
&
20 -
&
10 - &
L
0 - T T : : '
2004 2006 2009 2012 2014 2017

3

A Brief History of
Parallelism in Java

A Brief History of Parallelism in Java
» Foundational parallelism support

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Java Execution Environment (e.g., JVM)

System Libraries

@)
e.qg., Java fork-join pool ¥
was released in Java 7 C'}

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#Java SE 7

https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Parallelism in Java

« Foundational parallelism support
« Focus on fine-grained object-

DataSource

. . fork()
Orlented data pa ra I Iel |Sm DataSource; DataSource,
[[
fork() fork()
DataSource; ; DataSource; » DataSource; 4 DataSource; »
| | | |

Process Process Process Process

sequentially sequentially sequentially sequentially

ITIT

See en.wikipedia.org/wiki/Data parallelism

https://en.wikipedia.org/wiki/Data_parallelism

A Brief History of Parallelism in Java

« Foundational parallelism support [—

» Focus on fine-grained object- '

fork()

oriented data parallelism DataSource; DataSource,
| |
 e.g., runs the same task Tork) Fork()
on different elements of DataSource; ; DataSource; , DataSource; ; DataSource, ,
. NPRINT [[[[
data by using the Spllt' Process Process Process Process
apply_ Combine" mOdel sequentially sequentially sequentially sequentially

See www.jstatsoft.org/article/view/v040i01/v40i01.pdf

http://www.jstatsoft.org/article/view/v040i01/v40i01.pdf

A Brief History of Parallelism in Java

- Foundational parallelism support ~ List<List<SearchResults>>
_ _ _ listOfListOfSearchResults
« Focus on fine-grained object- ForkJoinPool

oriented data parallelism . commonPool ()

. e.g., runs the same task -invoke (new

diff | £ SearchWithForkJoinTask
on different elements o (inputList,

data by using the “split- mPhrasesToFind, ...));
apply-combine” model

Input Strings to Search

Use a common fork-join pool to search

input strings to locate phrases that
match famous quotes by the Bard

Search Phrases

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin

A Brief History of Parallelism in Java

Foundational parallelism support ES—
|
fork()
DataSource; DataSource,
I I
Powerful & scalable but fork() fork()
tedIOUS to program dlreCtly DataSource; ; DataSource; > DataSource; ; DataSource; >
— — - - [| I I

i o /| Process Process Process Process

sequentially sequentially sequentially sequentially

A Brief History of Parallelism in Java
« Advanced parallelism support

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

Java Execution Environment (e.g., JVM)

System Libraries

@)
S~~~
+
e.g., Java parallel streams CI—)
& completable futures

first available in Java 8

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#Java SE 8

https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Parallelism in Java

- Advanced parallelism support Parallel Streams

+ Initial focus on fine-grained EECONEE-- E
functional programming frame- = | <€ [l < 1 < i < |
works for data parallelism

A
¢
WA
v
«%\

1
fiter(not(this::urlCached))
~~- i i
map(this::.downloadlmage)
~> i
map(this::applyFilters)
~F
reduce(Stream::concat) ...
<5

collect(toList())

—----------------1

See en.wikipedia.org/wiki/Data parallelism

https://en.wikipedia.org/wiki/Data_parallelism

A Brief History of Parallelism in Java
 Advanced parallelism support List<Image> images =

. . . 1
» Initial focus on fine-grained urss

£ fi | ina fram .parallelStream()
unctional programmi _g Frame .filter (not(this: :urlCached))
works for data parallelism

.map (this: :downloadImage)
.map (this: :applyFilters)
.reduce (Stream: :concat)
.orElse (Stream.empty ())
.collect(toList()) ;

Synchronously download images that
aren’t already cached from a list of URLS
& process/store the images in paralle/

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java

A Brief History of Parallelism in Java

 Advanced parallelism support
.y . . /page\ = 8 /‘
« Initial focus on fine-grained cupplyAsync m—
functional programming frame- (getStartPage())

works for data parallelism &
asynchrony [1 A ‘/ X] A 26

/imgNuml\ = /page‘a}

. thenApplyAsync . thenComposeAsync
(countImages (page)) (crawlHyperLinks
(page))

.thenApply (List: :size)

1 AXI \/ A26

/imgNuml)\ . thenCombine (/imgNum2\,
(imgNuml, imgNum2) ->
Integer: :sum)

See gist.github.com/staltz/868e7e9bc2a7b8c1f754

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754

A Brief History of Parallelism in Java

 Advanced parallelism support CompletableFuture

« Initial focus on fine-grained
functional programming frame-
works for data parallelism &
asynchrony

Combines streams & completable futures

to asynchronously download images that

aren’t already cached from a list of URLs
& process/store the images in paralle/

<Stream<Image>>

resultsFuture = urls
.stream/()
.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)
.flatMap (this: :applyFiltersAsync)
.collect (toFuture())
.thenApply (stream ->

log(stream. flatMap

(Optional: :stream),
urls.size()))

.join() ;

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuturel .java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuture1.java

A Brief History of Parallelism in Java
« Advanced parallelism support

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

« Later focus on pub/sub reactive

streams frameworks Java Execution Environment (e.g., JVM)

System Libraries

O
S~~~
+
e.g., Java reactive streams made (—5
available in Java 9 have enabled the

RxJava & Project Reactor frameworks

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#Java SE 9

https://en.wikipedia.org/wiki/Java_version_history

A Brief History of Pa

rallelism in Java

Advanced parallelism support List<
F

Image> filteredImages
lux

.fromIterable (urls)

.parallel ()
.runOn (Schedulers

« Later focus on pub/sub reactive
streams frameworks

Applies Project Reactor reactive streams
to asynchronously download images that
aren’t already cached from a list of URLS

& process/store the images in paralle/

.boundedElastic())

.filter (url -> 'urlCached(url))
.map (this: :blockingDownload)
.flatMap (this: :applyFilters)
.sequential ()

.collectList()

.block () ;
Project
Reactor

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamReactor2.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamReactor2.java

A Brief History of Parallelism in Java

« Java’s advanced parallelism frameworks
are designed to strike a balance between
productivity & performance

Performance

Productivity

17

A Brief History of Parallelism in Java

« Java’s advanced parallelism frameworks
are designed to strike a balance between
productivity & performance

« However, these frameworks can be
overly prescriptive

X

1'
"\
~ \‘(\‘
- \

o

\
o),
Parallel Streams

HEEEEH... |

IENETETE

| filter(not(this::uriCached)) |

§ T
S

flatMap(this::applyFilters
[
i! i!

collect(tolist())

18

A Brief History of Parallelism in Java

« Java’s advanced parallelism frameworks
are designed to strike a balance between

productivity & performance

« However, these frameworks can be
overly prescriptive, e.g.

 Abstracting away low-level details
limits fine-grained control over the

parallelization process

\‘ 5
=T
$ 2%

=
Parallel Streams

HEEEEH... |

1
A8

RN RS

|ﬁlter(not(thls :uriCached))

i

map(this:.downloadimage)

§

flatMap(this::applyFilters)

S~

collect(tolist())

" "
: N

-
N

19

A Brief History of ParaIIellsm in Java

« Java’s advanced parallelism frameworks
are designed to strike a balance between

productivity & performance

« However, these frameworks can be
overly prescriptive, e.g.

« If a problem doesn't fit well into the

constructs provided it may be ha

rd

to implement an efficient solution

Parallel Streams

HEEEEH... |

RN RS

| filter(not(this:.urlCached)) |

i

map(this:.downloadimage) |

§

flatMap(this::applyFilters) |

R

collect(toList{()) |

-
E. N

i’
P o)
[§)

y Sy \

..-_.‘

ONA »o‘\
-\ﬂ,. ‘.f\ \

20

A Brief History of Parallelism in Java

« Java's advanced parallelism frameworks | DataSource |
are designed to strike a balance between fork() |
productivity & performance

| DataSource, | | DataSource, |

| fork() | [fork() |
| DataSource, , | | DataSource, , | | DataSource;, ; | | DataSource, , |
| |

Process Process Process Process
sequentially sequentially sequentially sequentially

« There’s also some overhead for task

scheduling, data partitioning, & thread
management

WH'!IT IFITOLD YOU THAT

)

: |
\ \

THEREIS NO FREELUNCH?

21

The Evolution of Java from
Concurrency to Parallelism

22

The Evolution of Java from Concurrency to Parallelism

* Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

See www.youtube.com/watch?v=NsDE7E8sIdQ

http://www.youtube.com/watch?v=NsDE7E8sIdQ

The Evolution of Java from Concurrency to Parallelism

* Brian Goetz has an excellent talk 60 -
about the evolution of Java from
concurrent to parallel computing 50 -

40 - ¢ Actual
- Predicted
30 -
¢
20 -
His talk explains how modern Java ¢
combines functional programming | 10~ A
with fine-grained data parallelism
to leverage many-core processors 0 -

2004 2006 2009 2012

2014

2017

See www.infog.com/presentations/parallel-java-se-8

http://www.infoq.com/presentations/parallel-java-se-8

The Evolution of Java from Concurrency to Parallelism

* Rob Pike also has a good talk that
explains the differences between
concurrency & parallelism

His talk explains how concurrency i

Is about dealing with lots of things R O b P | k ©
at once, whereas parallelism is Concurrency is not Parallelism

about doing lots of things at once

See www.youtube.com/watch?v=cN DpYBzKso

http://www.youtube.com/watch?v=cN_DpYBzKso

The Evolution of Java from Concurrency to Parallelism

 Likewise, Ron Pressler’s podcast
differentiates concurrency &
parallelism

Parallelism is about cooperating on a
single thing, & concurrency is about
different things competing for resources

What are the differences between concurrency
and parallelism? [02:51]

Charles Humble: Project Loom is mainly concerned with concurrency on the JVM.
And | think that some of our listeners might be confused by the differences
between concurrency and parallelism. Can you help us out? Can you give us a sort
of definition of the two and what the differences are?

Ron Pressler: The way | define it and in fact that is also the way that the ACM
recommends people teach it, is that concurrency is the problem of scheduling
multiple largely independent tasks onto a usually smaller set of computational
resources. So, we have a large set of tasks that might interact with one another,
but otherwise are largely independent and they're all competing for resources. The
canonical example is of course, a server. Parallelism on the other hand is a
completely different algorithmic problem. Parallelism is when we have one job to
do, say, invert a matrix, and we just want to do it faster. And the way we want to do
it faster is by employing multiple processing units. So, we break the job down into
multiple cooperating tasks and they all work together to accomplish that one task.

| So parallelism is about cooperating on a single thing, and concurrency is about

different things competing for resources. So in Java, parallelism is perhaps best
served by parallel streams. And of course, project Loom tries to address the
problem with concurrency.

See www.infog.com/podcasts/java-project-loom

https://www.infoq.com/podcasts/java-project-loom

End of the History of
Parallelism Support in Java

27

