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A Brief History of
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A Brief History of Parallelism in Java
» Foundational parallelism support
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See en.wikipedia.org/wiki/Java version history#Java SE 7
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A Brief History of Parallelism in Java

« Foundational parallelism support
« Focus on fine-grained object-
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See en.wikipedia.org/wiki/Data parallelism
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A Brief History of Parallelism in Java

« Foundational parallelism support [—

» Focus on fine-grained object- '

fork()

oriented data parallelism DataSource; DataSource,
| |
 e.g., runs the same task Tork) Fork()
on different elements of DataSource; ; DataSource; , DataSource; ; DataSource, ,
. NPRINT [ [ [ [
data by using the Spllt' Process Process Process Process
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See www.jstatsoft.org/article/view/v040i01/v40i01.pdf
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A Brief History of Parallelism in Java

- Foundational parallelism support ~ List<List<SearchResults>>
_ _ _ listOfListOfSearchResults
« Focus on fine-grained object- ForkJoinPool

oriented data parallelism . commonPool ()

. e.g., runs the same task -invoke (new

diff | £ SearchWithForkJoinTask
on different elements o (inputList,

data by using the “split- mPhrasesToFind, ...));
apply-combine” model

Input Strings to Search

Use a common fork-join pool to search . . . .

input strings to locate phrases that
match famous quotes by the Bard

Search Phrases

See github.com/douglascraigschmidt/LiveLessons/tree/master/SearchForkJoin
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A Brief History of Parallelism in Java
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A Brief History of Parallelism in Java
« Advanced parallelism support
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See en.wikipedia.org/wiki/Java version history#Java SE 8
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A Brief History of Parallelism in Java

- Advanced parallelism support Parallel Streams

+ Initial focus on fine-grained EECONEE-- E
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See en.wikipedia.org/wiki/Data parallelism
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A Brief History of Parallelism in Java
 Advanced parallelism support List<Image> images =

. . . 1
» Initial focus on fine-grained urss

£ fi | ina fram .parallelStream()
unctional programmi _g Frame .filter (not(this: :urlCached))
works for data parallelism

.map (this: :downloadImage)
.map (this: :applyFilters)
.reduce (Stream: :concat)
.orElse (Stream.empty () )
.collect(toList()) ;

Synchronously download images that
aren’t already cached from a list of URLS
& process/store the images in paralle/

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamParallel.java
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A Brief History of Parallelism in Java

 Advanced parallelism support
.y . . /page\ = 8 /‘
« Initial focus on fine-grained cupplyAsync m—
functional programming frame- (getStartPage())

works for data parallelism &
asynchrony [1 A ‘/ X] A 26

/imgNuml\ = /page‘a}

. thenApplyAsync . thenComposeAsync
(countImages (page) ) (crawlHyperLinks
(page))

.thenApply (List: :size)

1 AXI \/ A26

/imgNuml)\ . thenCombine (/imgNum2\,
(imgNuml, imgNum2) ->
Integer: :sum)

See gist.github.com/staltz/868e7e9bc2a7b8c1f754
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A Brief History of Parallelism in Java

 Advanced parallelism support CompletableFuture

« Initial focus on fine-grained
functional programming frame-
works for data parallelism &
asynchrony

Combines streams & completable futures

to asynchronously download images that

aren’t already cached from a list of URLs
& process/store the images in paralle/

<Stream<Image>>

resultsFuture = urls
.stream/()
.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)
.flatMap (this: :applyFiltersAsync)
.collect (toFuture())
.thenApply (stream ->

log(stream. flatMap

(Optional: :stream),
urls.size()))

.join() ;

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamCompletableFuturel .java
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A Brief History of Parallelism in Java
« Advanced parallelism support

Applications

Additional Frameworks & Languages

Java/INI

Threading & Synchronization Packages

« Later focus on pub/sub reactive

streams frameworks Java Execution Environment (e.g., JVM)

System Libraries

O
S~~~
+
e.g., Java reactive streams made (—5
available in Java 9 have enabled the

RxJava & Project Reactor frameworks

C

Operating System Kernel

See en.wikipedia.org/wiki/Java version history#Java SE 9
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A Brief History of Pa

rallelism in Java

Advanced parallelism support List<
F

Image> filteredImages
lux

.fromIterable (urls)

.parallel ()
.runOn (Schedulers

« Later focus on pub/sub reactive
streams frameworks

Applies Project Reactor reactive streams
to asynchronously download images that
aren’t already cached from a list of URLS

& process/store the images in paralle/

.boundedElastic())

.filter (url -> 'urlCached(url))
.map (this: :blockingDownload)
.flatMap (this: :applyFilters)
.sequential ()

.collectList()

.block () ;
Project
Reactor

See ImageStreamGang/CommandLine/src/main/java/livelessons/streams/ImageStreamReactor2.java
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A Brief History of Parallelism in Java

« Java’s advanced parallelism frameworks
are designed to strike a balance between
productivity & performance
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A Brief History of Parallelism in Java

« Java’s advanced parallelism frameworks
are designed to strike a balance between
productivity & performance

« However, these frameworks can be
overly prescriptive
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A Brief History of Parallelism in Java

« Java’s advanced parallelism frameworks
are designed to strike a balance between

productivity & performance

« However, these frameworks can be
overly prescriptive, e.g.

 Abstracting away low-level details
limits fine-grained control over the

parallelization process
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A Brief History of ParaIIellsm in Java

« Java’s advanced parallelism frameworks
are designed to strike a balance between

productivity & performance

« However, these frameworks can be
overly prescriptive, e.g.

« If a problem doesn't fit well into the

constructs provided it may be ha

rd

to implement an efficient solution
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A Brief History of Parallelism in Java

« Java's advanced parallelism frameworks | DataSource |
are designed to strike a balance between fork() |
productivity & performance

| DataSource, | | DataSource, |

| fork() | [ fork() |
| DataSource, , | | DataSource, , | | DataSource;, ; | | DataSource, , |
| |

Process Process Process Process
sequentially sequentially sequentially sequentially

« There’s also some overhead for task

scheduling, data partitioning, & thread
management
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The Evolution of Java from
Concurrency to Parallelism
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The Evolution of Java from Concurrency to Parallelism

* Brian Goetz has an excellent talk
about the evolution of Java from
concurrent to parallel computing

See www.youtube.com/watch?v=NsDE7E8sIdQ
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The Evolution of Java from Concurrency to Parallelism

* Brian Goetz has an excellent talk 60 -
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See www.infog.com/presentations/parallel-java-se-8
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The Evolution of Java from Concurrency to Parallelism

* Rob Pike also has a good talk that
explains the differences between
concurrency & parallelism

His talk explains how concurrency i

Is about dealing with lots of things R O b P | k ©
at once, whereas parallelism is Concurrency is not Parallelism

about doing lots of things at once

See www.youtube.com/watch?v=cN DpYBzKso



http://www.youtube.com/watch?v=cN_DpYBzKso

The Evolution of Java from Concurrency to Parallelism

 Likewise, Ron Pressler’s podcast
differentiates concurrency &
parallelism

Parallelism is about cooperating on a
single thing, & concurrency is about
different things competing for resources

What are the differences between concurrency
and parallelism? [02:51]

Charles Humble: Project Loom is mainly concerned with concurrency on the JVM.
And | think that some of our listeners might be confused by the differences
between concurrency and parallelism. Can you help us out? Can you give us a sort
of definition of the two and what the differences are?

Ron Pressler: The way | define it and in fact that is also the way that the ACM
recommends people teach it, is that concurrency is the problem of scheduling
multiple largely independent tasks onto a usually smaller set of computational
resources. So, we have a large set of tasks that might interact with one another,
but otherwise are largely independent and they're all competing for resources. The
canonical example is of course, a server. Parallelism on the other hand is a
completely different algorithmic problem. Parallelism is when we have one job to
do, say, invert a matrix, and we just want to do it faster. And the way we want to do
it faster is by employing multiple processing units. So, we break the job down into
multiple cooperating tasks and they all work together to accomplish that one task.

| So parallelism is about cooperating on a single thing, and concurrency is about

different things competing for resources. So in Java, parallelism is perhaps best
served by parallel streams. And of course, project Loom tries to address the
problem with concurrency.

See www.infog.com/podcasts/java-project-loom
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End of the History of
Parallelism Support in Java
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