
When to Apply Parallelism in Practice
Douglas C. Schmidt

 d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand the meaning of key concepts associated with parallel
programming

• Know when to apply parallelism
in practice
• i.e., what conditions must apply

to choose parallelism as the
programming paradigm

Learning Objectives in this Part of the Lesson

3

When to Apply
Parallelism in Practice

4

When to Apply Parallelism in Practice
• Parallelism is not a panacea!!

Particularly when there’s contention for shared resources

5

When to Apply Parallelism in Practice

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

• Instead, parallelism works best under
certain conditions

6

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

When to Apply Parallelism in Practice

7

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have little/no
dependency or need for communication between

tasks or for sharing results between them

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

When to Apply Parallelism in Practice

http://en.wikipedia.org/wiki/Embarrassingly_parallel

8

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent

See en.wikipedia.org/wiki/Embarrassment_of_riches

“Embarrassing” in this context means ”over-
abundance” or “too much of a good thing”!

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

When to Apply Parallelism in Practice

https://en.wikipedia.org/wiki/Embarrassment_of_riches

9

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

When to Apply Parallelism in Practice

See en.wikipedia.org/wiki/Terracotta_Army

https://en.wikipedia.org/wiki/Terracotta_Army

10

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• The ”N*Q” heuristic estimates

the benefit of parallelism

N hilo
lo

hi

Q

Ideal

• N is the # of data elements to process
• Q quantifies CPU processing intensity

for each data element

When to Apply Parallelism in Practice

See on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

https://on-sw-integration.epischel.de/2016/08/05/parallel-stream-processing-with-java-8-stream-api

11

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• The ”N*Q” heuristic estimates

the benefit of parallelism

N hilo
lo

hi

Q

Low N, Low Q: The situation generally does not
favor parallelization due to overhead costs incurred

When to Apply Parallelism in Practice

Ideal

In this case, it’s usually best to stick with sequential programming

12

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• The ”N*Q” heuristic estimates

the benefit of parallelism

N hilo
lo

hi

Q

High N, Low Q: The overhead of parallelizing may outweigh
the benefits, as the computational work per element is trivial

When to Apply Parallelism in Practice

Brian Goetz recommends ‘N’ be > 10,000

int sumArray(int[] arr) {
 int sum = 0;
 for (int num : arr)
 sum += num;
 return sum;
}

13

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• The ”N*Q” heuristic estimates

the benefit of parallelism

N hilo
lo

hi

Q

Low N, High Q: The computational workload for each data element is high, so
even a small N can benefit from parallelization because work can be partitioned
across multiple cores, thereby reducing the total time for computation

When to Apply Parallelism in Practice

Often seen in simulations, complex math computations, or graphics rendering

BigInteger factorial(int n) {
 BigInteger fact = ONE;

 for (int i = 1; i <= n; i++)
 fact = fact
 .multiply
 (BigInteger.valueOf(i));

 return fact;
}

14

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• The ”N*Q” heuristic estimates

the benefit of parallelism

N hilo
lo

hi

Q

High N, High Q: The potential
for parallel speedup is significant

When to Apply Parallelism in Practice

Ideal

int[] numbers = new int[10000];
for (int i = 0; i < 10000; i++)
 numbers[i] = i + 100000;

for (int num : numbers)
 List<Integer> factors =
 primeFactors(num);
 print("Prime factors of "
 + num + " are: "
 + factors);

15See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• When tasks neither block

nor share mutable state

When to Apply Parallelism in Practice

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

16

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• When tasks neither block

nor share mutable state
• Hence Java’s focus on
• The “fork-join” paradigm
• To avoid sharing mutable state

See en.wikipedia.org/wiki/Fork-join_model

When to Apply Parallelism in Practice

https://en.wikipedia.org/wiki/Fork%E2%80%93join_model

17

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• When tasks neither block

nor share mutable state
• Hence Java’s focus on
• The “fork-join” paradigm
• “Work-stealing”
• To avoid blocking

See en.wikipedia.org/wiki/Work_stealing

When to Apply Parallelism in Practice

https://en.wikipedia.org/wiki/Work_stealing

18

join join
join

Process
sequentially

Process
sequentially

Process
sequentially

Sub-task1.1 Sub-task1.2 Sub-task2.1 Sub-task2.2

Sub-task1 Sub-task2
fork()

Task

fork() fork()

Process
sequentially

• Instead, parallelism works best under
certain conditions, e.g.
• When tasks are independent
• When there’s lots of data

& processing to perform
• When tasks neither block

nor share mutable state
• When there are many

cores and/or processors

When to Apply Parallelism in Practice

See en.wikipedia.org/wiki/Multi-core_processor & en.wikipedia.org/wiki/Multiprocessing

The more, the merrier

https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multiprocessing

19

End of When to Apply Parallel
Programming in Practice

