Douglas C. Schmidt
i.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize the parallelism frameworks
supported by Java, e.g.

 Reactive streams

« An async programming paradigm
concerned with processing data
streams & propagating changes
between publishers & subscribers

Y V V VvV VvV V VvV V¥
observeOn( D)

Q@O0 @000~

map({ O--->[1})

@O0 08000l

subscribeOn( >)

@ 08 a0l

observeOn( ’)
\d

Y Y V

See en.wikipedia.org/wiki/Reactive Streams



https://en.wikipedia.org/wiki/Reactive_Streams

Overview of Java Reactive
Parallelism Frameworks




Overview of Java Reactive Parallelism Frameworks

« Reactive programming is based on four key principles

Responsive

Elastic & %o /&9 Resilient

Message-
driven

See www.reactivemanifesto.org



http://www.reactivemanifesto.org/

Overview of Java Reactive Parallelism Frameworks

« Reactive programming is based on four key principles

1. Responsive — provide rapid & consistent
response times Responsive

Elastic %o &4 Resilient

Message-
driven

See www.reactivemanifesto.org



http://www.reactivemanifesto.org/

Overview of Java Reactive Parallelism Frameworks

« Reactive programming is based on four key principles

Responsive
2. Resilient — the system remains responsive,

even in the face of failures
Elastic %Yo &Y Resilient

Message-
driven

See www.reactivemanifesto.org



http://www.reactivemanifesto.org/

Overview of Java Reactive Parallelism Frameworks

« Reactive programming is based on four key principles

Responsive

3. Elastic — a system should remain ; P\ G
responsive, even under varying N LR Resilient
workload e

Message-
driven

See www.reactivemanifesto.org



http://www.reactivemanifesto.org/

Overview of Java Reactive Parallelism Frameworks
» Reactive programming is based on four key principles

Responsive

4. Message-driven — asynchronous

@ Resilient
message-passing to ensure loose

coupling, isolation, & location Message-
transparency between components driven

See www.reactivemanifesto.org



http://www.reactivemanifesto.org/

Overview of Java Reactive Parallelism Frameworks
 Java supports reactive parallelism via the “Flow" API

¢ = Flow
( A u— m & Flow()
- — ) } f DEFAULT_BUFFER_SIZE int
i defaultBufferSize() int
e | m efaultBufferSize in
\___/ ,]‘l \ 1
——————————————————————— ]\ : M
I = Subscriber<T> i I = Publisher<T>
The IE/OW AP.[ was m) %= onNext(T) void m) = subscribe(Subscriber<T>) void
added n Java 9 ml % onError(Throwable) void F— A
m) %= onSubscribe(Subscription) void i f
m onComplete() void : !
A ? ri'\_n:'\ A
é ! é
I . R /I ]\
Subscription [ i I Processor<T, R> r—’
m cancel() void
m! = request(long) void
L

See docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Flow.html



https://docs.oracle.com/en/java/javase/20/docs/api/java.base/java/util/concurrent/Flow.html

Overview of Java Reactive Parallelism Frameworks

« Java supports reactive parallelism via the “Flow” API
« Implements a reactive streams pub/sub framework via two patterns

Inform how many items

“subscriber is willing to accept === Control

o ---

Subscriber » Data

Send acceptable
number of items

See javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber



http://javasampleapproach.com/java/java-9/java-9-flow-api-example-publisher-and-subscriber

Overview of Java Reactive Parallelism Frameworks

« Java supports reactive parallelism via the “Flow” API
« Implements a reactive streams pub/sub framework via two patterns

Inform how many items |
il “subscriber is willing to accept | ===3 Contxo
Subscriber » Data
Send acceptable
number of items DGSlgH Patterns
« [terator Object Orengdcibvare
. . Richard il
 Applies a “pull model” where app subscribe(s) pull

items from a publisher source

T

See en.wikipedia.org/wiki/Iterator pattern



https://en.wikipedia.org/wiki/Iterator_pattern

Overview of Java Reactive Parallelism Frameworks

« Java supports reactive parallelism via the “Flow” API

« Implements a reactive streams pub/sub framework via two patterns

Inform how many items
subscriber is willing to accept

Send acce_:mtabler
number of items
« Observer

» Applies a “push model” that reacts when a publisher
source pushes items to subscriber sink(s)

o ----

Subscriber

-==9 Control

P Data

Design Patterns

Elements of Reusable
Object-Oriented.Software

Erich Gammal
Richard Helm
Ralph Johnson
John Vlissides

Foreword by Grady Booch

T

See en.wikipedia.org/wiki/Observer pattern



https://en.wikipedia.org/wiki/Observer_pattern

Overview of Java Reactive Parallelism Frameworks

« RxJava & Project Reactor are popular
Java reactive streams implementations

Project
Reactor

See www.baeldung.com/rx-java & projectreactor.io



http://www.baeldung.com/rx-java
https://projectreactor.io/

Overview of Java Reactive Parallelism Frameworks

» RxJava & Project Reactor are popular
Java reactive streams implementations A ’ () | >

» The subscribeOn(), publishOn(),
& observeOn() operators map
events to threads & thread pools |

Y vV v v

publishOn(’) ‘ C I:

Y v v
subscribeOn (’ )

Y Y Y
— 0001+
o ZJJ |

See zoltanaltfatter.com/2018/08/26/subscribeOn-publishOn-in-Reactor



https://zoltanaltfatter.com/2018/08/26/subscribeOn-publishOn-in-Reactor/

Overview of Java Reactive Parallelism Frameworks

« RxJava & Project Reactor are popular A
Java reactive streams implementations

Description

Schedules computation bound work
Schedulers.computation() (ScheduledExecutorSence with pool size = NCPU, LRU
worker select strategy)

Schedulers.immediate() Schedules work on current thread

/0 bound work (ScheduledExecutorService with growing

Schedulers.iof) thread pool)

o ThreadS & thread pOOIS are Schedulers.trampoline() Queues work on the current thread
managed by Schedulers

Schedulers.newThread() Creates new thread for every unit of work
Schedulers.test() Schedules work on scheduler supporting virtual time

Schedulers.from{Executor e) Schedules work to be executed on provided executor

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html



http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html

Overview of Java Reactive Parallelism Frameworks

« RxJava & Project Reactor are popular
Java reactive streams implementations -’ O

- :
0—O—0—
—O—e—et

ParaIIeIFIowabIe<O> :

I

: /
T

|
i

« There are also specialized N S S S R
parallel processing classes sequential

T S S R

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html



http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

Evaluating Pros & Cons
of Reactive Streams
Programming Frameworks

17



Evaluating Pros & Cons of Reactive Streams Programming Frameworks

 Pros of the reactive streams
programming frameworks

18



Evaluating Pros & Cons of Reactive Streams Programming Frameworks

* Pros of the reactive streams
programming frameworks
Schedules computation bound work

. i i Schedulers.computation() (ScheduledExecutorSenvice with pool size = NCPU, LRU
Support parallelism with a bl
minimal number of threads
via a range of thread pools

Name Description

Schedulers.immediate() Schedules work on current thread

schedulers.io() /0 bound work (ScheduledExecutorService with growing

thread pool)
Schedulers.trampoline() Queues work on the current thread
Schedulers.newThread() Creates new thread for every unit of work
Schedulers.test() Schedules work on scheduler supporting virtual time

Schedulers.from{Executor e) Schedules work to be executed on provided executor

See www.baeldung.com/rxjava-schedulers



http://www.baeldung.com/rxjava-schedulers

Evaluating Pros & Cons of Reactive Streams Programming Frameworks

* Pros of the reactive streams
programming frameworks

 Support parallelism with a
minimal number of threads
via a range of thread pools

 Scale up performance with
relatively few resources

rriliseconds {95th percentile)

(500ms backend service)

4000
3500
3000
2500
2000
1500
1000

500

=36 Synchronous
- Reactive

e

1 10 100 200 500

Concurrent users

1000 2000

See dzone.com/articles/spring-boot-20-webflux-reactive-performance-test



https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Evaluating Pros & Cons of Reactive Streams Programming Frameworks

* Pros of the reactive streams
programming frameworks

« Explicit synchronization and/or
threading is rarely needed when
applying these frameworks

Alleviates many accidental & inherent complexities of concurrency/parallelism




Evaluating Pros & Cons of Reactive Streams Programming Frameworks

 Pros of the reactive streams
programming frameworks

 Integrates streams, asynchrony,
& pub/sub paradigms cleanly

22



Evaluating Pros & Cons of Reactive Streams Programming Frameworks

« Cons of the reactive streams
programming frameworks

23



Evaluating Pros & Cons of Reactive Streams Programming Frameworks

« Cons of the reactive streams | ..
programming frameworks borimey
. It isn’t appropriate in -
all situations

3X

2X

Total Ownership Cost

1X

0X
small startup large

System Scale & Complexity

See www.youtube.com/watch?v=z0a0N90gaAA



http://www.youtube.com/watch?v=z0a0N9OgaAA

Evaluating Pros & Cons of Reactive Streams Programming Frameworks

e Cons of the reactive streams | ..
programming frameworks s
M , - M “ 4)(
« It isn't appropriate in 3
all situations S| ox
I 5
g
g 2:%
Q
8
¢ IE X
0% small startup large

System Scale & Complexity

STEEP
LEARNING

GRSV E AR steep learning curve to the uninitiated

/

Reactive programming can have a fairly

See www.freecodecamp.org/news/a-complete-roadmap-for-learning-rxjava-9316ee6aeda?’



http://www.freecodecamp.org/news/a-complete-roadmap-for-learning-rxjava-9316ee6aeda7

Evaluating Pros & Cons of Reactive Streams Programming Frameworks

« Cons of the reactive streams
programming frameworks

» We emphasize reactive streams
programming later in this course
to show where & when to apply it

See upcoming module on Reactive Streams & RxJava




End of How Parallel
Programs Are Developed
in Java (Part 3)

27



