
Evaluating the Java Parallel
ImageStreamGang Case Study

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand purpose of the

ImageStreamGang app
• Recognize patterns applied in the

ImageStreamGang app
• Know how the structure of the

ImageStreamGang app
• Visualize how Java parallel streams are

applied to the ImageStreamGang app
• Learn how the parallel stream behaviors

of ImageStreamGang are implemented
• Be aware of the pros & cons of

the parallel streams solution

See github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang

http://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI

3

Pros of the Java
Parallel Streams Solution

4

Pros of the Java Parallel Streams Solution
• The parallel stream version is faster than the sequential streams version

ImageStreamGang

Starting ImageStreamGangTest
Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 153 msecs
COMPLETABLE_FUTURES_1 executed in 251 msecs
PARALLEL_STREAM executed in 300 msecs
SEQUENTIAL_STREAM executed in 1026 msecs

Printing 4 results for input file 2 from fastest to slowest
PARALLEL_STREAM executed in 62 msecs
COMPLETABLE_FUTURES_1 executed in 68 msecs
COMPLETABLE_FUTURES_2 executed in 70 msecs
SEQUENTIAL_STREAM executed in 261 msecs
Ending ImageStreamGangTest

Tests conducted on a 2.4 GHz eight-core Lenovo P1 with 128 Gbytes of RAM

5

Pros of the Java Parallel Streams Solution
• The parallel stream version is faster than the sequential streams version
• e.g., images are downloaded & processed

in parallel on multiple cores

filter(not(this::urlCached))

collect(toList())

List of URLs to Download

…

map(this::blockingDownload)

map(this::applyFilters) …

6

Pros of the Java Parallel Streams Solution
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

• The solution is relatively straight
forward to understand

7

Pros of the Java Parallel Streams Solution
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

• The solution is relatively straight
forward to understand, e.g.
• The behaviors map cleanly

onto the domain intent

8See www.iro.umontreal.ca/~keller/Layla/remote.pdf

Pros of the Java Parallel Streams Solution
• The solution is relatively straight

forward to understand, e.g.
• The behaviors map cleanly

onto the domain intent
• Behaviors are all synchronous

CALLER CALLEE

Check the cache

Download the image

return result

return result

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

http://www.iro.umontreal.ca/~keller/Layla/remote.pdf

9

Pros of the Java Parallel Streams Solution
• The solution is relatively straight

forward to understand, e.g.
• The behaviors map cleanly

onto the domain intent
• Behaviors are all synchronous
• The flow of control can be

read “linearly”
• Parallel programming thus

closely resembles sequential
programming

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

10

Cons of the Java
Parallel Streams Solution

11

Cons of the Java Parallel Streams Solution
• Completable futures are sometimes faster than parallel streams

ImageStreamGang

Starting ImageStreamGangTest
Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 153 msecs
COMPLETABLE_FUTURES_1 executed in 251 msecs
PARALLEL_STREAM executed in 300 msecs
SEQUENTIAL_STREAM executed in 1026 msecs

Printing 4 results for input file 2 from fastest to slowest
PARALLEL_STREAM executed in 62 msecs
COMPLETABLE_FUTURES_1 executed in 68 msecs
COMPLETABLE_FUTURES_2 executed in 70 msecs
SEQUENTIAL_STREAM executed in 261 msecs
Ending ImageStreamGangTest

12

• In general, there's a tradeoff between computing performance & programmer
productivity when choosing amongst Java parallelism frameworks
• i.e., completable futures are often more

efficient & scalable than parallel streams,
but are somewhat harder to program

Performance

Productivity

Cons of the Java Parallel Streams Solution

13

End of Evaluating the Java
Parallel ImageStreamGang

Case Study

