Learn How to Implement Behaviors in the

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

void processStream() ({
List<Image> filteredImages =
getInput ()
.parallelStream()
.filter (not(this: :urlCached))
.map (this: :blockingDownload)
.map (this: :applyFilters)
.reduce (Stream: :concat)
.orElse (Stream.empty ())
.collect(toList()) ;

« Learn how the parallel stream behaviors

of ImageStreamGang are implemented System.out.println(TAG
+ "Image(s) filtered = "

+ filteredImages.size())

}

See github.com/douglascraigschmidt/Livel essons/blob/master/ImageStreamGang

http://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI

Implementing a Parallel
Stream In ImageStreamGang

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
.map (this: :applyFilters)
.reduce (Stream: :concat)
.orElse (Stream.empty ())
.collect(toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

}

See imagestreamgang/streams/ImageStreamParallel.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamParallel.java

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()
.filter (not(this: :urlCached))
Get a list of URLs .map (this: :blockingDownload)

.map (this: :applyFilters)
.reduce (Stream: :concat)

.orElse (Stream.empty ())

.collect(toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

}

getInput() is defined by the underlying StreamGang framework

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() ({
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream/()
.filter (not(this: :urlCached))
Convert a collection .map (this: :blockingDownload)
into a parallel stream .map (this: :applyFilters)

.reduce (Stream: :concat)
.orElse (Stream.empty ())
.collect (toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))

g .map (this: :applyFilters)

the input stream that are .reduce (Stream: : concat)

not already cached .orElse (Stream.empty ())
.collect (toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

}

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#filter

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))

g .map (this: :applyFilters)

the input stream that are .reduce (Stream: : concat)

not already cached .orElse (Stream.empty ())
.collect (toList()) ;
T | System.out.println (TAG
‘ + "Image(s) filtered = "
sl

+ filteredImages.size());

}

of output stream elements will be <= # of input stream elements

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()
(boolean urlCached (URL url) ({ .filter (not(this: :urlCached))
return mFilters .map (this: :blockingDownload)
.stream/() .map (this: :applyFilters)

.anyMatch (filter ->
urlCached (url,
filter

.reduce (Stream: :concat)
.orElse (Stream.empty ())

Z//’ _getName ())) ; .collect(toList()) ;

} 7 System.out.println (TAG
Determine whether this url has + "Image(s) filtered = "
been downloaded to an image + filteredImages.size());

& had filters applied to it yet }

See imagestreamgang/streams/ImageStreamGang.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamGang.java

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {

in ImageStreamParallel.java List<Image> filteredImages =

getInput ()

) . .parallelStream()

boolean urlCached (URL url, .filter (not(this: :urlCached))

String filterName) ({ .map (this: :blockingDownload)
File file = .map (this: :applyFilters)
new File(getPath(), .reduce (Stream: : concat)
filterName) ;

.orElse (Stream.empty ())

File imageFile = .collect (toList()) ;

new File(file,

getNameForUrl (url)) ; System.out.println (TAG
+ "Image(s) filtered = "

return imageFile.exists(); + filteredImages.size()) :
|} } | Check if a file with this name already exists

J

See imagestreamgang/streams/ImageStreamGang.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamGang.java

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() ({
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()

.parallelStream()

".o .filter (not(this: :urlCached))

' .map (this: :blockingDownload)
o .map (this: :applyFilters)
.” .reduce (Stream: :concat)
.orElse (Stream.empty ())
ClearbBetter" .collect (toList());
SOLUTIONS System.out.println (TAG

+ "Image(s) filtered = "
+ filteredImages.size());

}

There are clearly better ways of implementing an image cache!

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamGang.java

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
Return an output stream .map (this: :blockingDownload)
consisting of the images that / .map (this: :applyFilters)
were downloaded from the .reduce (Stream: : concat)
URLs in the input stream .orElse (Stream.empty())
.collect(toList()) ;

| — System.out.println (TAG
+ "Image(s) filtered = "
‘_ + filteredImages.size())

}

of output stream elements must match the # of input stream elements

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream()

in ImageStreamParallel.java

(Image blockingDownload
(URL url) {
return BlockingTask
.callInManagedBlock
(0 ->

downloadImage (url)) ;

\

\

Downloads content from a ur!
& converts it into an image

void processStream() {

}

List<Image> filteredImages =
getInput ()
.parallelStream()
.filter (not(this: :urlCached))
.map (this: :blockingDownload)
map (this: :applyFilters)
.reduce (Stream: :concat)
.orElse (Stream.empty ())
.collect(toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

See imagestreamgang/streams/ImageStreamParallel.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamParallel.java

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredlmages =
getInput ()
(Image blockingDownload) -parallelStream()
(URL url) { .filter (not (this: :urlCached))
return BlockingTask .map (this: :blockingDownload)
.callInManagedBlock map (this: :applyFilters)
Q) -> .reduce (Stream: : concat)
downloadImage (url)) ; .orElse (Stream.empty ())
|} \\) .collect (toList()) ;
Uses a "managed blocker” to System.out.println (TAG
ensure sufficient threads are in + "Image(s) filtered ="
the common fork-join pool + filteredImages.size());

}

See lesson on " 7he Java Fork-Join Pool: Applying the ManagedBlocker Interface”

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() ({
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
(Image blockingDownload) .parallelStream()
(URL url) { .filter (not (this: :urlCached))
return BlockingTask .map (this: :blockingDownload)
.callInManagedBlock map (this: :applyFilters)
(() -> .reduce (Stream: : concat)
downloadImage (url)) ; .orElse (Stream.empty ())
|} \\ .collect (toList()) ;
1/0-bound tasks on an N-core System.out.println (TAG
CPU typically run best with + "Image(s) filtered = "
N*(1+WT/ST) threads (WT = + filteredImages.size()) ;
wait time & ST = service time) }

See stackoverflow.com/a/19563172

https://stackoverflow.com/a/19563172

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()

.parallelStream()
.filter (not(this: :urlCached))
.map (this: :blockingDownload)
Return an output stream .map (this: :applyFilters)
consisting of the images that / .reduce (Stream: :concat)
were downloaded from the .orElse (Stream.empty ())
URLs in the input stream .collect (toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

}

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#map

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {

in ImageStreamParallel.java

List<Image> filteredImages =
getInput ()
.parallelStream()

Return an output stream-of-streams
containing results of applying a list of
filters to each image in the input stream
& storing results in the file system

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
\

.map (this: :applyFilters)
.reduce (Stream: :concat)

.orElse (Stream.empty ())
.collect (toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

17

Implementing a Parallel Stream in ImageStreamGang

. We focus on processStream() ~ void processStream() {

in ImageStreamParallel.java List<Image> filteredImages =

getInput()
.parallelStream/()

Return an output stream-of-streams ' fllti; _(m_)z():hl]s{f :u; 1Cac1:he:))

containing results of applying a list of "o (th}sj Y town cad)
filters to each image in the input stream | "o (Ehis::applyFilters)

& storing results in the file system -reduce (Stream: : concat)

.orElse (Stream.empty ())
.collect (toList()) ;

| — System.out.println (TAG
+ "Image(s) filtered = "
‘_ + filteredImages.size())

}

of output stream elements must match the # of input stream elements

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {

in ImageStreamParallel.java List<Image> filteredImages =
~ getInput()

fStream<Image> applyFilters
(Image image) {
return mFilters
.parallelStream()
.map (filter ->
makeFilterWithImage

(filter,
image) .run())

J \)
\

Apply all filters to an image in
parallel & store on the device

}

.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
.map (this: :applyFilters)
.reduce (Stream: :concat)
.orElse (Stream.empty ())
.collect(toList()) ;

System.out.println (TAG

+ "Image(s) filtered = "
+ filteredImages.size());

See imagestreamgang/streams/ImageStreamParallel.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamParallel.java

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)

Perform flattening manually by -map (this: :applyFilters)
replacing flatMap() with map() | - reduce (Stream: :concat)
+ reduce(Stream..concat) .orElse (Stream.empty ())

.collect (toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

}

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)

This idiom works-around .map (this: :applyFilters)
a limitation with flatMap() .reduce (Stream: : concat)
for parallel streams .orElse (Stream.empty ())

.collect (toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

}

See stackoverflow.com/questions/45038120/parallel-flatmap-always-seguential /66386078

https://stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
.map (this: :applyFilters)
.reduce (Stream: :concat)
.orElse (Stream.empty ())
.collect(toList()) ;

Trigger all the preceding
intermediate operations

—

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

22

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
.map (this: :applyFilters)
.reduce (Stream: :concat)
reduce() returns an Optional, so .orElse (Stream.empty ())

we need to handle that case, .collect (toList()) ;

e.qg., if all images were cached

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

}

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =

getInput ()

.parallelStream()

.filter (not(this: :urlCached))
collect() is a "reauction” .map (this: :blockingDownload)
operation that combines .map (this: :applyFilters)
elements into one result .reduce (Stream: : concat)

\\\\\\\\\:orElse(Stream.empty())

.collect(toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

}

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
It’s somewhat unusual to see two -map (this: :applyFilters)
terminal operations in one stream! -reduce (Stream: :concat)

\\\\\\\ .orElse (Stream.empty ())
.collect(toList()) ;

System.out.println (TAG
+ "Image(s) filtered = "
+ filteredImages.size())

25

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
.map (this: :applyFilters)
.reduce (Stream: :concat)

.orElse (Stream.empty ())
.collect(toList()) ;

Create a list containing all System.out.println (TAG
the filtered & stored images + "Image(s) filtered = "

+ filteredImages.size());

26

Implementing a Parallel Stream in ImageStreamGang

« We focus on processStream() void processStream() {
in ImageStreamParallel.java List<Image> filteredImages =
getInput ()
.parallelStream()

.filter (not(this: :urlCached))
.map (this: :blockingDownload)
.map (this: :applyFilters)
.reduce (Stream: :concat)
.orElse (Stream.empty ())
.collect(toList()) ;

Logs the # of images that were System.out.println (TAG
downloaded, filtered, & stored | T™———___ + "Image(s) filtered = "

+ filteredImages.size())

}

27

End of Learn How to
Implement Behaviors in the
Java ParallelImageStream
Gang Case Study

28

