
Learn How to Implement Behaviors in the
Java Parallel ImageStreamGang Case Study

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand purpose of the

ImageStreamGang app
• Recognize patterns applied in the

ImageStreamGang app
• Know how the structure of the

ImageStreamGang app
• Visualize how Java parallel streams are

applied to the ImageStreamGang app
• Learn how the parallel stream behaviors

of ImageStreamGang are implemented

See github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

http://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI

3

Implementing a Parallel
Stream in ImageStreamGang

4

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

See imagestreamgang/streams/ImageStreamParallel.java

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamParallel.java

5

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

Get a list of URLs

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

getInput() is defined by the underlying StreamGang framework

6

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

Convert a collection
into a parallel stream

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

7

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

Return an output stream
consisting of the URLs in
the input stream that are

not already cached

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#filter

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

8

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

of output stream elements will be <= # of input stream elements

Return an output stream
consisting of the URLs in
the input stream that are

not already cached

9

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

boolean urlCached(URL url) {
return mFilters

.stream()

.anyMatch(filter ->
urlCached(url,

filter
.getName()));

}

See imagestreamgang/streams/ImageStreamGang.java

Determine whether this url has
been downloaded to an image
& had filters applied to it yet

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamGang.java

10

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

boolean urlCached(URL url,
String filterName) {

File file =
new File(getPath(),

filterName);

File imageFile =
new File(file,

getNameForUrl(url));

return imageFile.exists();
}

See imagestreamgang/streams/ImageStreamGang.java

Check if a file with this name already exists

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamGang.java

11

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

See imagestreamgang/streams/ImageStreamGang.javaThere are clearly better ways of implementing an image cache!

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamGang.java

12

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

of output stream elements must match the # of input stream elements

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

Return an output stream
consisting of the images that
were downloaded from the
URLs in the input stream

13See imagestreamgang/streams/ImageStreamParallel.java

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

Image blockingDownload
(URL url) {

return BlockingTask
.callInManagedBlock

(() ->
downloadImage(url));

}

Downloads content from a url
& converts it into an image

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamParallel.java

14

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

Image blockingDownload
(URL url) {

return BlockingTask
.callInManagedBlock

(() ->
downloadImage(url));

}

See lesson on “The Java Fork-Join Pool: Applying the ManagedBlocker Interface”

Uses a “managed blocker” to
ensure sufficient threads are in

the common fork-join pool

15

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

Image blockingDownload
(URL url) {

return BlockingTask
.callInManagedBlock

(() ->
downloadImage(url));

}

See stackoverflow.com/a/19563172

I/O-bound tasks on an N-core
CPU typically run best with

N*(1+WT/ST) threads (WT =
wait time & ST = service time)

https://stackoverflow.com/a/19563172

16

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

Return an output stream
consisting of the images that
were downloaded from the
URLs in the input stream

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#map

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

17

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

Return an output stream-of-streams
containing results of applying a list of

filters to each image in the input stream
& storing results in the file system

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

18

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

of output stream elements must match the # of input stream elements

Return an output stream-of-streams
containing results of applying a list of

filters to each image in the input stream
& storing results in the file system

19

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

Stream<Image> applyFilters
(Image image) {

return mFilters
.parallelStream()
.map(filter ->

makeFilterWithImage
(filter,
image).run())

}

See imagestreamgang/streams/ImageStreamParallel.java

Apply all filters to an image in
parallel & store on the device

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamParallel.java

20

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

Perform flattening manually by
replacing flatMap() with map()

+ reduce(Stream::concat)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

21

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

See stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

This idiom works-around
a limitation with flatMap()

for parallel streams

https://stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

22

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

Trigger all the preceding
intermediate operations

23

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java
void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

reduce() returns an Optional, so
we need to handle that case,
e.g., if all images were cached

See docs.oracle.com/javase/8/docs/api/java/util/Optional.html#orElse

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

24

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

collect() is a “reduction”
operation that combines
elements into one result

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

25

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

It’s somewhat unusual to see two
terminal operations in one stream!

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

26

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

Create a list containing all
the filtered & stored images

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

27

Implementing a Parallel Stream in ImageStreamGang
• We focus on processStream()

in ImageStreamParallel.java

Logs the # of images that were
downloaded, filtered, & stored

void processStream() {
List<Image> filteredImages =
getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

System.out.println(TAG
+ "Image(s) filtered = "
+ filteredImages.size());

}

28

End of Learn How to
Implement Behaviors in the
Java ParallelImageStream

Gang Case Study

