
Evaluating the Java SearchWith
ParallelSpliterator Case Study

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Be aware of how a parallel spliterator

can improve parallel stream performance
• Know the intent of—& fields in—the 

PhraseMatchSpliterator
• Recognize the PhraseMatchSpliterator

constructor & tryAdvance() method 
implementation

• Understand the PhraseMatchSpliterator
trySplit() method implementation

• Understand the pros & cons of the 
SearchWithParallelSpliterator class



3

Pros of the SearchWith
ParallelSpliterator Class



4

Pros of the SearchWithParallelSpliterator Class

45,000+ phrases

Search Phrases

Input Strings to Search

…
• This example shows how a parallel 

spliterator can help transparently 
improve program performance



5Tests conducted on a 3.2GHz 10-core MacBook Pro with 64 Gbytes of RAM

Pros of the SearchWithParallelSpliterator Class

45,000+ phrases

Search Phrases

Input Strings to Search

…
• This example shows how a parallel 

spliterator can help transparently 
improve program performance

Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 369 msecs
COMPLETABLE_FUTURES_PHASES executed in 388 msecs
PARALLEL_STREAMS executed in 399 msecs
PARALLEL_STREAM_PHASES executed in 417 msecs
PARALLEL_STREAM_INPUTS executed in 423 msecs
COMPLETABLE_FUTURES_INPUT executed in 460 msecs
FORK_JOIN_POOL executed in 466 msecs
SEQUENTIAL_LOOPS executed in 2157 msecs
SEQUENTIAL_STREAM executed in 2523 msecs
Ending SearchStreamGangTest



6

• This example shows how a parallel 
spliterator can help transparently 
improve program performance

Pros of the SearchWithParallelSpliterator Class

45,000+ phrases

Search Phrases

Input Strings to Search

…

Tests conducted on a 2.7GHz quad-core Lenovo P50 with 32 Gbytes of RAM

Starting SearchStreamGangTest
PARALLEL_SPLITERATOR executed in 409 msecs
COMPLETABLE_FUTURES_INPUTS executed in 426 msecs
COMPLETABLE_FUTURES_PHASES executed in 427 msecs
PARALLEL_STREAMS executed in 437 msecs
PARALLEL_STREAM_PHASES executed in 440 msecs
RXJAVA_PHASES executed in 485 msecs
PARALLEL_STREAM_INPUTS executed in 802 msecs
RXJAVA_INPUTS executed in 866 msecs
SEQUENTIAL_LOOPS executed in 1638 msecs
SEQUENTIAL_STREAM executed in 1958 msecs
Ending SearchStreamGangTest



7

• This example shows how a parallel 
spliterator can help transparently 
improve program performance
• These speedups occur since

the granularity of parallelism
is finer & thus better able
to leverage available cores

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Pros of the SearchWithParallelSpliterator Class

http://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html


8

• This example also shows that the difference between using sequential vs 
parallel spliterator can be minuscule!

SearchResults searchForPhrase(String phrase, CharSequence input, 
String title, boolean parallel) {

return new SearchResults
(..., ..., phrase, title, StreamSupport
.stream(new PhraseMatchSpliterator(input, 

phrase),
parallel)

.collect(toList()));
}

Switching this boolean from “false” to “true” controls 
whether the spliterator runs sequentially or in parallel

Pros of the SearchWithParallelSpliterator Class



9

• This example also shows that the difference between using sequential vs 
parallel spliterator can be minuscule!

SearchResults searchForPhrase(String phrase, CharSequence input, 
String title, boolean parallel) {

return new SearchResults
(..., ..., phrase, title, StreamSupport
.stream(new PhraseMatchSpliterator(input, 

phrase),
parallel)

.collect(toList()));
}

Pros of the SearchWithParallelSpliterator Class

Of course, it took non-trivial time/effort to create PhraseMatchSpliterator..



10

Cons of the SearchWith
ParallelSpliterator Class



11

• The parallel-related portions of PhraseMatchSpliterator are much more 
complicated to program than the sequential-related portions... 

Cons of the SearchWithParallelSpliterator Class

class PhraseMatchSpliterator
implements Spliterator<Result> {

...
Spliterator<Result> trySplit() { ... }

int computeStartPos(int splitPos) { ... }

int tryToUpdateSplitPos(int startPos, 
int splitPos) 

{ ... }

PhraseMatchSpliterator splitInput(int splitPos) { ... }
...



12

• The parallel-related portions of PhraseMatchSpliterator are much more 
complicated to program than the sequential-related portions... 

Cons of the SearchWithParallelSpliterator Class

class PhraseMatchSpliterator
implements Spliterator<Result> {

...
Spliterator<Result> trySplit() { ... }

int computeStartPos(int splitPos) { ... }

int tryToUpdateSplitPos(int startPos, 
int splitPos) 

{ ... }

PhraseMatchSpliterator splitInput(int splitPos) { ... }
...

Junit tests are extremely useful..

Must split carefully..



13

• The parallel-related portions of PhraseMatchSpliterator are much more 
complicated to program than the sequential-related portions... 

Cons of the SearchWithParallelSpliterator Class

class PhraseMatchSpliterator
implements Spliterator<Result> {

...
Spliterator<Result> trySplit() { ... }

int computeStartPos(int splitPos) { ... }

int tryToUpdateSplitPos(int startPos, 
int splitPos) 

{ ... }

PhraseMatchSpliterator splitInput(int splitPos) { ... }
...

Writing the parallel spliterator took longer than writing the rest of the program!



14

End of Evaluating the Java 
SearchWithParallelSpliterator

Case Study


