
Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

Java Parallel Streams Internals:
Implementing a Concurrent Map Collector

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Configure the Java parallel stream common fork-join pool
• Perform a reduction to combine partial results into a single result
• Recognize key behaviors & differences of non-concurrent & concurrent

collectors
• Be aware of non-concurrent & concurrent collector APIs
• Grok performance variance in concurrent & non-concurrent collectors
• Learn how to implement a concurrent Map collector

3

Rationale for a
Concurrent Map Collector

4See www.baeldung.com/java-8-collectors

Rationale for a Concurrent Map Collector
• The Java Collectors utility class

provides factory methods that
make non-concurrent collectors

http://www.baeldung.com/java-8-collectors

5

Rationale for a Concurrent Map Collector
• The Java Collectors utility class

provides factory methods that
make non-concurrent collectors
• It also contains some factory

methods that make collectors
based on ConcurrentMap
• e.g., ConcurrentHashMap &

ConcurrentSkipListMap

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html

6

Rationale for a Concurrent Map Collector
• The Java Collectors utility class

provides factory methods that
make non-concurrent collectors
• It also contains some factory

methods that make collectors
based on ConcurrentMap

• However, there are no pre-
defined concurrent collectors
provided by Java that return
sorted maps
• e.g., TreeMap

See docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html

7

Rationale for a Concurrent Map Collector
• The ConcurrentMapCollector is

designed to overcome this
omission with the Java class
library

See Java8/ex37/src/main/java/utils/ConcurrentMapCollector.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex36/src/main/java/utils/ConcurrentMapCollector.java
https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex37/src/main/java/utils/ConcurrentMapCollector.java
https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex36/src/main/java/utils/ConcurrentMapCollector.java

8

Rationale for a Concurrent Map Collector
• The ConcurrentMapCollector is

designed to overcome this
omission with the Java class
library

The Supplier param can be used to customize
the type of Map returned from this collector

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

9

Implementing a Generic
Concurrent Map Collector

10

Implementing a Generic Concurrent Map Collector
• ConcurrentMapCollector defines

four generic types

11

Implementing a Generic Concurrent Map Collector
• ConcurrentMapCollector defines

four generic types
• T – The type of objects

available from the Stream
• e.g., String, GCDParam,

SimpleImmutableEntry, etc.

See docs.oracle.com/javase/8/docs/api/java/util/AbstractMap.SimpleImmutableEntry.html

https://docs.oracle.com/javase/8/docs/api/java/util/AbstractMap.SimpleImmutableEntry.html

12

Implementing a Generic Concurrent Map Collector
• ConcurrentMapCollector defines

four generic types
• T
• K – The type of the key used

in the map
• e.g., Double, String, etc.

13

Implementing a Generic Concurrent Map Collector
• ConcurrentMapCollector defines

four generic types
• T
• A
• V – The type of the value

used in the map
• e.g., SearchResults, Integer,

GCDResult, etc.

14

Implementing a Generic Concurrent Map Collector
• ConcurrentMapCollector defines

four generic types
• T
• A
• V
• M – The type of Map returned

from the collector
• e.g., ConcurrentHashMap,

TreeMap, LinkedHashMap, etc.

ConcurrentMapCollector uses ConcurrentHashMap internally

15

• The toMap() factory method
creates a new instance of
ConcurrentMapCollector that
is parameterized by Java
functional interface objects

Implementing a Generic Concurrent Map Collector

16

• The toMap() factory method
creates a new instance of
ConcurrentMapCollector that
is parameterized by Java
functional interface objects
• e.g., return new

ConcurrentMapCollector<>
(keyMapper,
valueMapper,
mergeFunction,
mapSupplier);

Implementing a Generic Concurrent Map Collector

17

Implementing Concurrent
Map Collector Methods

18

• Five key methods are defined in
the ConcurrentMapCollector

Implementing Concurrent Map Collector Methods

19

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics() – provides

additional info to optimize
the collector, e.g.
• UNORDERED
• The collector need not

preserve encounter order

Implementing Concurrent Map Collector Methods

20

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics() – provides

additional info to optimize
the collector, e.g.
• UNORDERED
• CONCURRENT
• accumulator() is called concurrently

on the ConcurrentHashMap
mutable result container

Implementing Concurrent Map Collector Methods

ConcurrentHashMap methods are all synchronized!!

See www.geeksforgeeks.org/concurrenthashmap-in-java

https://www.geeksforgeeks.org/concurrenthashmap-in-java/

21

Set<Characteristics> characteristics() {
return Collections.unmodifiableSet
(EnumSet.of(Collector.Characteristics.CONCURRENT,

Collector.Characteristics.UNORDERED));
}

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics() – provides

additional info to optimize
the collector, e.g.

Implementing Concurrent Map Collector Methods

See docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

Any/all characteristics can
be set using EnumSet.of()

https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

22

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics()
• supplier() – returns a Supplier

that acts as a factory method
to generate an empty result
container

Implementing Concurrent Map Collector Methods

23

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics()
• supplier() – returns a Supplier

that acts as a factory method
to generate an empty result
container, e.g.
• return ConcurrentHashMap::new

Implementing Concurrent Map Collector Methods

24

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics()
• supplier()
• accumulator() – returns a

BiConsumer that adds a new
element to the existing
ConcurrentHashMap

Implementing Concurrent Map Collector Methods

25

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics()
• supplier()
• accumulator() – returns a

BiConsumer that adds a new
element to the existing
ConcurrentHashMap, e.g.
• return (Map<K, V> map, T element) -> map

.merge(mKeyMapper.apply(element),
mValueMapper.apply(element),
mMergeFunction);

Implementing Concurrent Map Collector Methods

ConcurrentHashMap’s merge()
method is efficiently synchronized

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

26

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics()
• supplier()
• accumulator()
• combiner() – returns a Binary

Operator that merges two result
containers together

Implementing Concurrent Map Collector Methods

27

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics()
• supplier()
• accumulator()
• combiner() – returns a Binary

Operator that merges two result
containers together, e.g.
• return (one, another) -> {

one.putAll(another); return one;
}

Implementing Concurrent Map Collector Methods

This method is only called for non-concurrent collectors..

28

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics()
• supplier()
• accumulator()
• combiner()
• finisher() – returns a Function

that converts ConcurrentHashMap
to the final Map result type

Implementing Concurrent Map Collector Methods

29

• Five key methods are defined in
the ConcurrentMapCollector
• characteristics()
• supplier()
• accumulator()
• combiner()
• finisher() – returns a Function

that converts ConcurrentHashMap
to the final Map result type, e.g.

Implementing Concurrent Map Collector Methods
return map -> {
M newMap =
mMapSupplier.get();

if (newMap instanceof
ConcurrentHashMap)

return (M) map;
else {
newMap.putAll(map);
return newMap;

}
};

Only copies data if M isn’t a ConcurrentHashMap

30

Implementing Concurrent Map Collector Methods

See Java8/ex37/src/main/java/utils/ConcurrentMapCollector.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex36/src/main/java/utils/ConcurrentMapCollector.java
https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex37/src/main/java/utils/ConcurrentMapCollector.java
https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex36/src/main/java/utils/ConcurrentMapCollector.java

31

End of Java Parallel Streams
Internals: Implementing a
Concurrent Map Collector

