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Learning Objectives in this Part of the Lesson
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• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Configure the Java parallel 

stream common fork-join pool
• Perform a reduction to combine

partial results into a single result
• Recognize key behaviors & differences of

non-concurrent & concurrent collectors
• Be aware of non-concurrent & concurrent collector APIs
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Non-Concurrent & 
Concurrent Collector APIs



4See www.baeldung.com/java-8-collectors

Non-Concurrent & Concurrent Collector APIs
• The Collector interface defines

three generic types

http://www.baeldung.com/java-8-collectors
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• The Collector interface defines
three generic types
• T – The type of objects available

in the stream
• e.g., Integer, String, Double,

SearchResults, etc.

Non-Concurrent & Concurrent Collector APIs
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• The Collector interface defines
three generic types
• T
• A – The type of a mutable result 

container for accumulation
• e.g., List of T, Set of T, 

ConcurrentHashMap.
KeySetView, etc.

Non-Concurrent & Concurrent Collector APIs



7See docs.oracle.com/javase/tutorial/collections/implementations/list.html

• The Collector interface defines
three generic types
• T
• A – The type of a mutable result 

container for accumulation
• e.g., List of T, Set of T, 

ConcurrentHashMap.
KeySetView, etc.
• Lists can be implemented 

by ArrayList, LinkedList, etc.

Non-Concurrent & Concurrent Collector APIs

https://docs.oracle.com/javase/tutorial/collections/implementations/list.html
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• The Collector interface defines
three generic types
• T
• A
• R – The type of a final result
• e.g., List of T, CompletableFuture

to List of T ConcurrentHashMap.
KeyViewSet, etc.

Non-Concurrent & Concurrent Collector APIs

http://www.baeldung.com/java-8-collectors
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• Five methods are defined in the 
Collector interface

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED 
• The collector need not preserve

the encounter order

A concurrent collector should be UNORDERED, but a non-concurrent collector can be ORDERED

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH 
• The finisher() is the identity 

function so it can be a no-op
• e.g. finisher() just returns null

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• CONCURRENT 
• accumulator() is called concurrently on result container 

A concurrent collector should be CONCURRENT, but a non-concurrent collector should not be!

The mutable result container must be synchronized!!

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• CONCURRENT 
• accumulator() is called concurrently on result container 
• The combiner() method is a no-op 

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• CONCURRENT 
• accumulator() is called concurrently on result container 
• The combiner() method is a no-op 
• A non-concurrent collector can be used 

with either sequential or parallel streams

Internally, the streams framework decides how to ensure correct behavior

Non-Concurrent & Concurrent Collector APIs
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Set<Characteristics> characteristics() {
return Collections.unmodifiableSet
(EnumSet.of(Collector.Characteristics.CONCURRENT,

Collector.Characteristics.UNORDERED));
}

• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

See docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

Any/all characteristics can 
be set using EnumSet.of()

Non-Concurrent & Concurrent Collector APIs

https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container, e.g.
• return ArrayList::new

A non-concurrent collector provides a result container for each thread in a parallel stream

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container, e.g.
• return ArrayList::new
• return ConcurrentHashMap::newKeySet

A concurrent collector has one result container shared by all threads in a parallel stream

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container, e.g.
• return List::add

A non-concurrent collector needs no synchronization

Non-Concurrent & Concurrent Collector APIs

See docs.oracle.com/javase/8/docs/api/java/util/List.html#add

https://docs.oracle.com/javase/8/docs/api/java/util/List.html
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container, e.g.
• return List::add
• return ConcurrentHashMap.KeySetView::add

A concurrent collector’s result 
container must be synchronized

Non-Concurrent & Concurrent Collector APIs

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner() – returns a binary

operator that merges two result 
containers together

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner() – returns a binary

operator that merges two result 
containers together, e.g.
• return (one, another) -> { 

one.addAll(another); return one; 
}

A combiner() is only used for a non-concurrent collector

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner() – returns a binary

operator that merges two result 
containers together, e.g.
• return (one, another) -> { 

one.addAll(another); return one; 
}

The combiner() method is not called when CONCURRENT is set 

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner()
• finisher() – returns a function 

that converts the result container
to final result type

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner()
• finisher() – returns a function 

that converts the result container
to final result type, e.g.
• Function.identity()

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner()
• finisher() – returns a function 

that converts the result container
to final result type, e.g.
• Function.identity()
• return null

Should be a no-op if IDENTITY_FINISH characteristic is set

Non-Concurrent & Concurrent Collector APIs
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• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner()
• finisher() – returns a function 

that converts the result container
to final result type, e.g.
• Function.identity()
• return null

return set -> {
S ns = mSetSupplier.get();
if (ns instanceof ConcurrentHashMap

.KeySetView)
return (S) set;

else { ns.addAll(set); return ns; }
};

finisher() can also be more interesting!

Non-Concurrent & Concurrent Collector APIs
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End of Java Parallel Streams 
Internals: Non-Concurrent & 
Concurrent Collectors (Part 2)


