Concurrent & Concurrent Collectors (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson
« Understand parallel stream internals, e.g.

Process Process Process Process
sequentially sequentially sequentially sequentially

‘\ k accumulate()))
accumulate() accumulate()
Concurrent
Result Container

« Be aware of non-concurrent & concurrent collector APIs
2

Non-Concurrent &
Concurrent Collector APIs

Non-Concurrent & Concurrent Collector APIs

« The Collector interface defines N e
three generic types @lCollector<T,A,R> |

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A,T>

@ combiner():BinaryOperator<A>

@ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

See www.baeldung.com/java-8-collectors

http://www.baeldung.com/java-8-collectors

Non-Concurrent & Concurrent Collector APIs

e The Collector interface defines N e
three generic types @3 Collector4TJA,R>

« T - The type of objects available

in the stream @ supplier():Supplier<A>

@ accumulator():BiConsumer<A, T>

- e.g., Integer, String, Double, @ combiner():BinaryOperator<A>
SearchResults, etc. @ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

Non-Concurrent & Concurrent Collector APIs

« The Collector interface defines N e
three generic types @ Collector<T[A]R>

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A, T>

* A — The type of a mutable result

container for accumulation & combiner():BinaryOperator<A>
* e.g., List of T, Set of T, @ finisher():Function<A,R>
ConcurrentHashMap. @ characteristics():Set<Characteristics>

KeySetView, etc.

Non-Concurrent & Concurrent Collector APIs

« The Collector interface defines N e
three generic types @ Collector<T[A]R>

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A, T>

* A — The type of a mutable result

container for accumulation & combiner():BinaryOperator<A>
* e.g., List of T, Set of T, @ finisher():Function<A,R>
ConcurrentHashMap. @ characteristics():Set<Characteristics>

KeySetView, etc.

* Lists can be implemented
by ArrayList, LinkedList, etc.

See docs.oracle.com/javase/tutorial/collections/implementations/list.html

https://docs.oracle.com/javase/tutorial/collections/implementations/list.html

Non-Concurrent & Concurrent Collector APIs

« The Collector interface defines N e
three generic types @ Collector<T,A[R}

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A, T>

« R —The type of a final result @ combiner():BinaryOperator<A>
« e.g., List of T, CompletableFuture | @ finisher():Function<A,R>
to List of T ConcurrentHashMap @ characteristics():Set<Characteristics>

KeyViewSet, etc.

See www.baeldung.com/java-8-collectors

http://www.baeldung.com/java-8-collectors

Non-Concurrent & Concurrent Collector APIs

» Five methods are defined in the <<Java Interface>>
Collector interface @ Collector<T,A,R>
/\ @ supplier():Supplier<A>
\J @ accumulator():BiConsumer<A, T>
@ combiner():BinaryOperator<A>
/\ @ finisher():Function<A,R>

K @ characteristics():Set<Characteristics>

Hosk

Non-Concurrent & Concurrent Collector APIs
» Five methods are defined in the <<Java Interface>>
Collector interface @ Collector<T,A,R>
» characteristics() — provides a

stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A, T>
@ combiner():BinaryOperator<A>

* UNORDERED o finisher():Function<A,R>
« The collector need not preserve 0|characteristics():Set<Characteristics>

the encounter order Sov Te [as Fe s las faatege

vey | e | aa s | 4% gl

AAsl 0t RRT ey Sy R G oey

i‘*ozo Zszoozo % ¢ E’oo gvv Zgg 2‘2“9

» 4 a%a

A S ¢ N

'F'?; 'F'FZ O;:OOEAAgéiziéE

A concurrent collector should be UNORDERED, but a non-concurrent collector can be ORDERED

Non-Concurrent & Concurrent Collector APIs

* Five methods are defined in the
Collector interface

» characteristics() — provides a
stream with additional information
used for internal optimizations, e.g.

« IDENTITY_FINISH

» The finisher() is the identity
function so it can be a no-op

« e.g. finisher() just returns null

<<Java Interface>>

¥ Collector<T,A,R>

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A, T>
@ combiner():BinaryOperator<A>
@ finisher():Function<A,R>

0| characteristics():Set<Characteristics>

N
.

11

Non-Concurrent & Concurrent Collector APIs
» Five methods are defined in the <<Java Interface>>
Collector interface @ Collector<T,A,R>
» characteristics() — provides a

stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A, T>

@ combiner():BinaryOperator<A>

@ finisher():Function<A,R>

0| characteristics():Set<Characteristics>

« CONCURRENT
« accumulator() is called concurrently on result container

The mutable result container must be synchronized!!

A concurrent collector shouldbe CONCURRENT, but a non-concurrent collector should ot be!

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

» characteristics() — provides a
stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A, T>
0|combiner():BinaryOperator<A>
@ finisher():Function<A,R>

@ characteristics():Set<Characteristics>

« CONCURRENT

* The combiner() method is a no-op

)
.

13

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

» characteristics() — provides a
stream with additional information
used for internal optimizations, e.g.

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A, T>

@ combiner():BinaryOperator<A>

@ finisher():Function<A,R>

o| characteristics():Set<Characteristics>

« CONCURRENT

A non-concurrent collector can be used
with either sequential or parallel streams

Internally, the streams framework decides how to ensure correct behavior

Non-Concurrent & Concurrent Collector APIs

* Five methods are defined in the
Collector interface

» characteristics() — provides a
stream with additional information

used for internal optimizations, e.g.

Anyy/all characteristics can
be set using EnumSet.of()

ConcurrentSetCollector< >

ConcurrentSetCollector(Function< >, Supplier<S>)

supplier() Supplier<Set<E>>
toSet(Function<T, E>, Supplier<S>) Collector<T, ?, 5>
finisher() Function<Set<E>, 5>
accumulator() BiConsumer<Set<Et>, T>
combiner() BinaryOperator<Set<E> >

characteristics() Set<Characteristics>

Set<Characteristics> characteristics () {
return|Collections.unmodifiableSet
(EnumSet.of (Collector.Characteristics.CONCURRENT,
Collector.Characteristics.UNORDERED)) ;

See docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

] _ @| supplier():Supplier<A>
* supplier() —returns a supplier @ accumulator():BiConsumer<A, T>
that acts as a factory to generate @ combiner():BinaryOperator<A>

an empty result container o finisher():Function<A R>
@ characteristics():Set<Characteristics>

16

Non-Concurrent & Concurrent Collector APIs
« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

@| supplier():Supplier<A>
@ accumulator():BiConsumer<A, T>

« supplier() — returns a supplier

that acts as a factory ’_co generate & combiner():BinaryOperator<A>
an empty result container, e.g. @ finisher():Function<A,R>
* return Arraylist: :new @ characteristics():Set<Characteristics>

A non-concurrent collector provides a result container for each thread in a parallel stream

Non-Concurrent & Concurrent Collector APIs

* Five methods are defined in the
Collector interface

ConcurrentSetCollector< >

ConcurrentSetCollector(Function< >, Supplier<S>)

supplier() Supplier<Set<E>>
« supplier() — returns a supplier toSet(Function<T, £>, Supplier<5>) Collector<T, ?, 5>
finish ion<Set<E> S>

that acts as a factory to generate Isherl Function <Set
accumulator() BiConsumer<Set<E>, T>

an empty result container, e.q.

combiner() BinaryOperator<Set<E> >
characteristics() Set<Characteristics>

* return ConcurrentHashMap: : newKeySet

A concurrent collector has one result container shared by all threads in a parallel stream

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

@ supplier():Supplier<A>
OI accumulator():BiConsumer<A, T>

« accumulator() — returns a bi- @ combiner():BinaryOperator<A>
consumer that adds a new element | @ finisher():Function<A,R>
to an existing result container @ characteristics():Set<Characteristics>

19

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

@ supplier():Supplier<A>
el accumulator():BiConsumer<A,T>

« accumulator() — returns a bi- @ combiner():BinaryOperator<A>
consumer that adds a new element | @ finisher():Function<A,R>
to an existing result container, e.q. @ characteristics():Set<Characteristics>

* return List: :add

A non-concurrent collector needs no synchronization

See docs.oracle.com/javase/8/docs/api/java/util/List.html#add

https://docs.oracle.com/javase/8/docs/api/java/util/List.html

Non-Concurrent & Concurrent Collector APIs

* Five methods are defined in the
Collector interface

ConcurrentSetCollector< >

ConcurrentSetCollector(Function< >, Supplier<S>)

supplier() Supplier<Set<ft>>

toSet(Function<T, E>, Supplier<S>) Collector<T, ?, 5>

. finisher() Function<Set<E>, 5>

* accumUIator() - returns d bl_ accumulator() BiConsumer<Set<E>, T>
consumer that adds a new element combiner(E T e
to an EXiSting reSUIt Container, e-g- characteristics() Set<Characteristics>

* return ConcurrentHashMap.KeySetView: :add

A concurrent collectors result
container must be synchronized

See docs.orade.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A, T>
0| combiner():BinaryOperator<A>

- combiner() - returns a binary @ finisher():Function<A,R>
operator that merges two result @ characteristics():Set<Characteristics>

containers together

22

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

@ supplier():Supplier<A>
@ accumulator():BiConsumer<A, T>
OI combiner():BinaryOperator<A>

« combiner() - returns a binary @ finisher():Function<A,R>
operator that merges two result @ characteristics():Set<Characteristics>

containers together, e.g.

* return (one, another) -> {
one.addAll (another); return one;

}

A combiner() is only used for a non-concurrent collector

Non-Concurrent & Concurrent Collector APIs

* Five methods are defined in the

Collector interface

« combiner() — returns a binary
operator that merges two result
containers together, e.qg.

ConcurrentSetCollector< >

ConcurrentSetCollector(Function< >, Supplier<S>)

supplier() Supplier<Set<E> >
toSet(Function<T, E>, Supplier<S>) Collector<T, ?, 5>
finisher() Function<Set<E>, 5>
accumulator() BiConsumer<Set<E>, T>
combiner() BinaryOperator<Set<E> >

characteristics() Set<Characteristics>

The combiner() method is not called when CONCURRENT is set

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A, T>
@ combiner():BinaryOperator<A>
o| finisher():Function<A R>
@ characteristics():Set<Characteristics>

« finisher() — returns a function
that converts the result container
to final result type

25

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A, T>
@ combiner():BinaryOperator<A>
o| finisher():Function<A R>
@ characteristics():Set<Characteristics>

« finisher() — returns a function
that converts the result container
to final result type, e.q.

* Function.identity ()

26

Non-Concurrent & Concurrent Collector APIs

« Five methods are defined in the N e
Collector interface £ Collector<T,A,R>

@ supplier():Supplier<A>

@ accumulator():BiConsumer<A, T>
@ combiner():BinaryOperator<A>
o| finisher():Function<A R>
@ characteristics():Set<Characteristics>

« finisher() — returns a function
that converts the result container
to final result type, e.q.

N
.

* return null

AN

Should be a no-op if IDENTITY_FINISH characteristic is set

Non-Concurrent & Concurrent Collector APIs

* Five methods are defined in the
Collector interface

ConcurrentSetCollector< >

ConcurrentSetCollector(Function< >, Supplier<S>)

supplier() Supplier<Set<F>>

toSet(Function<T, E>, Supplier<S>) Collector<T, ?, 5>

finisher() Function<Set<E>, 5>

accumulator() BiConsumer<Set<Et>, T>

combiner() BinaryOperator<Set<E> >

° finiSher() _ returns 3 funCtiOn characteristics() Set<Characteristics>
that converts the result container return set -> {

: S ns = mSetSupplier.get();
to final result type, e.g. if (ns instanceof ConcurrentHashMap
.KeySetView)

return (S) set;
else { ns.addAll (set); return ns; }

};
finisher() can also be more interesting!

End of Java Parallel Streams
Internals: Non-Concurrent &
Concurrent Collectors (Part 2)

29

