
Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

Java Parallel Streams Internals: Non-
Concurrent & Concurrent Collectors (Part 2)

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2
trySplit()

InputString

trySplit() trySplit()

accumulate() accumulate()
accumulate()

Concurrent
Result Container

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Partition a data source into “chunks”
• Process chunks in parallel via the

common fork-join pool
• Configure the Java parallel 

stream common fork-join pool
• Perform a reduction to combine

partial results into a single result
• Recognize key behaviors & differences of

non-concurrent & concurrent collectors
• Be aware of non-concurrent & concurrent collector APIs



3

Non-Concurrent & 
Concurrent Collector APIs



4See www.baeldung.com/java-8-collectors

Non-Concurrent & Concurrent Collector APIs
• The Collector interface defines

three generic types

http://www.baeldung.com/java-8-collectors


5

• The Collector interface defines
three generic types
• T – The type of objects available

in the stream
• e.g., Integer, String, Double,

SearchResults, etc.

Non-Concurrent & Concurrent Collector APIs



6

• The Collector interface defines
three generic types
• T
• A – The type of a mutable result 

container for accumulation
• e.g., List of T, Set of T, 

ConcurrentHashMap.
KeySetView, etc.

Non-Concurrent & Concurrent Collector APIs



7See docs.oracle.com/javase/tutorial/collections/implementations/list.html

• The Collector interface defines
three generic types
• T
• A – The type of a mutable result 

container for accumulation
• e.g., List of T, Set of T, 

ConcurrentHashMap.
KeySetView, etc.
• Lists can be implemented 

by ArrayList, LinkedList, etc.

Non-Concurrent & Concurrent Collector APIs

https://docs.oracle.com/javase/tutorial/collections/implementations/list.html


8See www.baeldung.com/java-8-collectors

• The Collector interface defines
three generic types
• T
• A
• R – The type of a final result
• e.g., List of T, CompletableFuture

to List of T ConcurrentHashMap.
KeyViewSet, etc.

Non-Concurrent & Concurrent Collector APIs

http://www.baeldung.com/java-8-collectors


9

• Five methods are defined in the 
Collector interface

Non-Concurrent & Concurrent Collector APIs



10

• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED 
• The collector need not preserve

the encounter order

A concurrent collector should be UNORDERED, but a non-concurrent collector can be ORDERED

Non-Concurrent & Concurrent Collector APIs



11

• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH 
• The finisher() is the identity 

function so it can be a no-op
• e.g. finisher() just returns null

Non-Concurrent & Concurrent Collector APIs



12

• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• CONCURRENT 
• accumulator() is called concurrently on result container 

A concurrent collector should be CONCURRENT, but a non-concurrent collector should not be!

The mutable result container must be synchronized!!

Non-Concurrent & Concurrent Collector APIs



13

• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• CONCURRENT 
• accumulator() is called concurrently on result container 
• The combiner() method is a no-op 

Non-Concurrent & Concurrent Collector APIs



14

• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.
• UNORDERED
• IDENTITY_FINISH
• CONCURRENT 
• accumulator() is called concurrently on result container 
• The combiner() method is a no-op 
• A non-concurrent collector can be used 

with either sequential or parallel streams

Internally, the streams framework decides how to ensure correct behavior

Non-Concurrent & Concurrent Collector APIs



15

Set<Characteristics> characteristics() {
return Collections.unmodifiableSet
(EnumSet.of(Collector.Characteristics.CONCURRENT,

Collector.Characteristics.UNORDERED));
}

• Five methods are defined in the 
Collector interface
• characteristics() – provides a 

stream with additional information 
used for internal optimizations, e.g.

See docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html

Any/all characteristics can 
be set using EnumSet.of()

Non-Concurrent & Concurrent Collector APIs

https://docs.oracle.com/javase/8/docs/api/java/util/EnumSet.html


16

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container

Non-Concurrent & Concurrent Collector APIs



17

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container, e.g.
• return ArrayList::new

A non-concurrent collector provides a result container for each thread in a parallel stream

Non-Concurrent & Concurrent Collector APIs



18

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() – returns a supplier

that acts as a factory to generate 
an empty result container, e.g.
• return ArrayList::new
• return ConcurrentHashMap::newKeySet

A concurrent collector has one result container shared by all threads in a parallel stream

Non-Concurrent & Concurrent Collector APIs



19

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container

Non-Concurrent & Concurrent Collector APIs



20

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container, e.g.
• return List::add

A non-concurrent collector needs no synchronization

Non-Concurrent & Concurrent Collector APIs

See docs.oracle.com/javase/8/docs/api/java/util/List.html#add

https://docs.oracle.com/javase/8/docs/api/java/util/List.html


21

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier()
• accumulator() – returns a bi-

consumer that adds a new element 
to an existing result container, e.g.
• return List::add
• return ConcurrentHashMap.KeySetView::add

A concurrent collector’s result 
container must be synchronized

Non-Concurrent & Concurrent Collector APIs

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.KeySetView.html


22

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner() – returns a binary

operator that merges two result 
containers together

Non-Concurrent & Concurrent Collector APIs



23

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner() – returns a binary

operator that merges two result 
containers together, e.g.
• return (one, another) -> { 

one.addAll(another); return one; 
}

A combiner() is only used for a non-concurrent collector

Non-Concurrent & Concurrent Collector APIs



24

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner() – returns a binary

operator that merges two result 
containers together, e.g.
• return (one, another) -> { 

one.addAll(another); return one; 
}

The combiner() method is not called when CONCURRENT is set 

Non-Concurrent & Concurrent Collector APIs



25

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner()
• finisher() – returns a function 

that converts the result container
to final result type

Non-Concurrent & Concurrent Collector APIs



26

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner()
• finisher() – returns a function 

that converts the result container
to final result type, e.g.
• Function.identity()

Non-Concurrent & Concurrent Collector APIs



27

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner()
• finisher() – returns a function 

that converts the result container
to final result type, e.g.
• Function.identity()
• return null

Should be a no-op if IDENTITY_FINISH characteristic is set

Non-Concurrent & Concurrent Collector APIs



28

• Five methods are defined in the 
Collector interface
• characteristics()
• supplier() 
• accumulator()
• combiner()
• finisher() – returns a function 

that converts the result container
to final result type, e.g.
• Function.identity()
• return null

return set -> {
S ns = mSetSupplier.get();
if (ns instanceof ConcurrentHashMap

.KeySetView)
return (S) set;

else { ns.addAll(set); return ns; }
};

finisher() can also be more interesting!

Non-Concurrent & Concurrent Collector APIs



29

End of Java Parallel Streams 
Internals: Non-Concurrent & 
Concurrent Collectors (Part 2)


