
Java Parallel Streams Internals:
Order of Results for Collections

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Splitting, combining, & pooling

mechanisms
• Order of processing
• Order of results
• Overview
• Collections that affect results order

Learning Objectives in this Part of the Lesson

3

• Understand parallel stream internals, e.g.
• Know what can change & what can’t
• Splitting, combining, & pooling

mechanisms
• Order of processing
• Order of results
• Overview
• How collections affect results order

Learning Objectives in this Part of the Lesson

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

Multiple examples are analyzed in detail

List<Integer> list =
Arrays.asList(1, 2, ...);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex21

4

Collections that Affect
Results Order

5

• Encounter order is maintained by
• Ordered spliterators
• Ordered collections
• Static stream factory methods

Collections that Affect Results Order
List<Integer> list = Arrays
.asList(2, 3, 1, 4, 2);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

See www.lambdafaq.org/in-what-order-do-the-elements-of-a-stream-become-available

http://www.lambdafaq.org/in-what-order-do-the-elements-of-a-stream-become-available

6

• Encounter order is maintained by
• Ordered spliterators
• Ordered collections
• Static stream factory methods

Collections that Affect Results Order
List<Integer> list = Arrays
.asList(2, 3, 1, 4, 2);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

The encounter order is [2, 3, 1, 4, 2]
since list is ordered & non-unique

Recall that “ordered” isn’t the same as “sorted”!

7

• Encounter order is maintained by
• Ordered spliterators
• Ordered collections
• Static stream factory methods

Collections that Affect Results Order

Only even values continue thru stream

List<Integer> list = Arrays
.asList(2, 3, 1, 4, 2);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

8

Collections that Affect Results Order

Multiply each even number by 2

List<Integer> list = Arrays
.asList(2, 3, 1, 4, 2);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

• Encounter order is maintained by
• Ordered spliterators
• Ordered collections
• Static stream factory methods

9

• Encounter order is maintained by
• Ordered spliterators
• Ordered collections
• Static stream factory methods

Collections that Affect Results Order

Convert stream into an array of integers

List<Integer> list = Arrays
.asList(2, 3, 1, 4, 2);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

10

• Encounter order is maintained by
• Ordered spliterators
• Ordered collections
• Static stream factory methods

Collections that Affect Results Order

Result must be ordered as [4, 8, 4]
since the list is an ordered collection

List<Integer> list = Arrays
.asList(2, 3, 1, 4, 2);

Integer[] doubledList = list
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

11

• Unordered collections don’t need
to respect encounter order

Collections that Affect Results Order
Set<Integer> set = new
HashSet<>(Arrays.asList
(2, 3, 1, 4, 2))

Integer[] doubledSet = set
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

12

• Unordered collections don’t need
to respect encounter order

Collections that Affect Results Order
Set<Integer> set = new
HashSet<>(Arrays.asList
(2, 3, 1, 4, 2));

Integer[] doubledSet = set
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

A HashSet is unordered & unique

13

• Unordered collections don’t need
to respect encounter order

Collections that Affect Results Order
Set<Integer> set = new
HashSet<>(Arrays.asList
(2, 3, 1, 4, 2));

Integer[] doubledSet = set
.parallelStream()
.filter(x -> x % 2 == 0)
.map(x -> x * 2)
.toArray(Integer[]::new);

This code may run faster since encounter
order need not be maintained in the end
results, which could be [8, 4] or [4, 8]

14

End of Java Parallel Streams
Internals: Order of Results

for Collections

