
Key Combining Operators 
in the Observable Class (Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Factory method operations
• Transforming operators
• Concurrency & scheduler 

operators
• Error handling operators
• Combining operators
• These operators create a Single 

by accumulating elements in
an Observable stream
• e.g., reduce(), collectInto(),

& collect()



3

Key Combining Operators 
in the Observable Class



4

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 

Single<U> collectInto
(U initialItem,
BiConsumer<? super U, ? super T> 
collector)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collectInto

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html


5

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 
• The 1st param is the mutable 

data structure that accumulates 
(collects) the items

Single<U> collectInto
(U initialItem,
BiConsumer<? super U, ? super T> 
collector)

...

.collectInto
(new ArrayList<BigFraction>(), 
List::add)

...



6

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 
• The 1st param is the mutable

data structure that accumulates 
(collects) the items

• The 2nd param is a BiConsumer
that accepts the accumulator & 
an emitted item
• The accumulator is modified 

accordingly

Single<U> collectInto
(U initialItem,
BiConsumer<? super U, ? super T>
collector)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiConsumer.html

...

.collectInto
(new ArrayList<BigFraction>(), 
List::add)

...

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiConsumer.html


7

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 
• The 1st param is the mutable

data structure that accumulates 
(collects) the items

• The 2nd param is a BiConsumer
that accepts the accumulator & 
an emitted item

• Returns a Single that emits 
the mutable data structure

Single<U> collectInto
(U initialItem,
BiConsumer<? super U, ? super T> 
collector)



8

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 

• This operator is a simplified 
version of reduce() that does 
not need to return the state 
on each pass

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html


9

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 

• This operator is a simplified 
version of reduce() that does 
not need to return the state 
on each pass

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

Observable
.fromIterable(bigFractions)
.flatMap(...)
.filter(fraction -> fraction.compareTo(0) > 0)
.collectInto(new ArrayList<BigFraction>(), List::add)
...

Collect filtered BigFractions into a list

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java


10

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 

• This operator is a simplified 
version of reduce() that does 
not need to return the state 
on each pass

• Project Reactor’s Flux.collect() 
operator works the same way

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


11

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 

• This operator is a simplified 
version of reduce() that does 
not need to return the state 
on each pass

• Project Reactor’s Flux.collect() 
operator works the same way
• Flux.collectList() is a more concise 

(albeit more limited) option

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collectList

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


12

Key Combining Operators in the Observable Class
• The collectInto() operator
• Collects items emitted by the 

finite source Observable into a 
single mutable data structure 

• This operator is a simplified 
version of reduce() that does 
not need to return the state 
on each pass

• Project Reactor’s Flux.collect() 
operator works the same

• Similar to the Stream.collect() 
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

List<Integer> evenNumbers = List
.of(1, 2, 3, 4, 5, 6)
.stream()
.filter(x -> x % 2 == 0)
.collect(toList());

Collect even #’d Integers into a List

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html


13

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container

<R, A> Single<U> collect
(Collector<? super T, 

A, 
R> collector)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collect

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html


14

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• The param is the Java Stream 

Collector interface defining the 
container supplier, accumulator, 
& finisher functions

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

<R, A> Single<U> collect
(Collector<? super T, 

A, 
R> collector)

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html?is-external=true


15

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• The param is the Java Stream 

Collector interface defining the 
container supplier, accumulator,
& finisher functions

• Returns a Single that emits 
the container

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

<R, A> Single<U> collect
(Collector<? super T, 

A, 
R> collector)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html


16

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified 

version of reduce() that does 
not need to return the state 
on each pass

Observable
.generate(emitter)
.take(sMAX_FRACTIONS)
.flatMap(...)
.collect(toList())
.flatMapCompletable(...);

Collect all the processed 
BigFractions into a List

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java


17

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified 

version of reduce() that does 
not need to return the state 
on each pass
• It’s also similar to operator 

Observable.collectInto()

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collectInto

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html


18

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified 

version of reduce() that does 
not need to return the state 
on each pass

• Project Reactor’s Flux.collect() 
operator works the same way

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


19

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified 

version of reduce() that does 
not need to return the state 
on each pass

• Project Reactor’s Flux.collect() 
operator works the same way
• Flux.collectList() is a more concise 

(albeit more limited) option

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collectList

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


20

Key Combining Operators in the Observable Class
• The collect() operator
• Collects the finite upstream’s

values into a container
• This operator is a simplified 

version of reduce() that does 
not need to return the state 
on each pass

• Project Reactor’s Flux.collect() 
operator works the same

• Similar to the Stream.collect() 
method in Java Streams

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

Set<Integer> evenNumbers = List
.of(1, 2, 2, 3, 4, 4, 5, 6, 6)
.stream()
.filter(x -> x % 2 == 0)
.collect(toSet());

Collect even #’d Integers into a Set

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html


21

End of Key Combining 
Operators in the Observable 

Class (Part 3)


