in the Observable Class (Part 2)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in th|s Part of the Lesson
» Recognize key Observable operators [sssse g e

« Combining operators

« This operator creates a Maybe
by accumulating elements in
an Observable stream

 e.g., reduce()

Key Combining Operators
in the Observable Class

Key Combining Operators in the Observable Class
* The reduce() operator Maybe<T> reduce

- Reduce this Observable’s values (BiFunction<T, T, T> reducer)
into a single object of the same
type as the emitted items

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

Key Combining Operators in the Observable Class

* The reduce() operator

» Reduce this Observable’s values
into a single object of the same
type as the emitted items

« Reduction is performed using a

BiFunction param

Maybe<T> reduce

(BiFunction<T, T, T> reducer)

Interface BiFunction<T,U,R>

Type Parameters:

T - the type of the first argument to the function
U - the type of the second argument to the function
R - the type of the result of the function

All Known Subinterfaces:

BinaryOperator<T>

Functional Interface:

This is a functional interface and can therefore be used
as the assignment target for a lambda expression or
method reference.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/BiFunction.html

Key Combining Operators in the Observable Class

« The reduce() operator Maybe<T> reduce
(BiFunction<T, T, T> reducer)

» Reduce this Observable’s values

into a single object of the same

Observable of Integers from 1..4

type as the emitted items

« Reduction is performed using a 0—>
BiFunction param

» This param is passed the
intermediate result of the
reduction & the current value

3

This value is initialized
to zero (0) for Integer

4

Y
10

6

Key Combining Operators in the Observable Class

« The reduce() operator Maybe<T> reduce
(BiFunction<T, T, T> reducer)

» Reduce this Observable’s values
into a single object of the same
type as the emitted items

« Reduction is performed using a
BiFunction param

» This param is passed the
intermediate result of the
reduction & the current value

« It returns the next intermediate
value of the reduction

Observable of Integers from 1..4

1—4;

4

—e
3

Key Combining Operators in the Observable Class
* The reduce() operator Maybe<T> reduce

. , BiFunction<T, T, T> reducer
« Reduce this Observable’s values ()

into a single object of the same Observable of Integers from 1..4
type as the emitted items !

3 4
« Reduction is performed using a 0 _)
BiFunction param
« This param is passed the

intermediate result of the
reduction & the current value — >+

SE
 This process repeats for each pair of values 10

8

Key Combining Operators in the Observable Class

* The reduce() operator

» Reduce this Observable’s values
into a single object of the same
type as the emitted items

« Reduction is performed using a
BiFunction param

» This param is passed the
intermediate result of the
reduction & the current value

 This process repeats for each pair of values ‘

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

‘H@

2

— (&

3

+

4

(0))

Y
10

9

Key Combining Operators in the Observable Class

* The reduce() operator

» Reduce this Observable’s values
into a single object of the same
type as the emitted items

« Reduction is performed using a
BiFunction param

» This param is passed the
intermediate result of the
reduction & the current value

 This process repeats for each pair of values ‘

Maybe<T> reduce
(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

‘H@

2

— (&

3

+

4

(0))

Y
10

10

Key Combining Operators in the Observable Class

» The reduce() operator Maybe<T> reduce
- Reduce this Observable’s values (BiFunction<T, T, T> reducer)
into a single object of the same Observable of Integers from 1..4
type as the emitted items é 3 A',
. R_educti_on is performed using a 0 —>
BiFunction param

» This param is passed the
intermediate result of the

reduction & the current value 3—>(+
e
 This process repeats for each pair of values 10

11

Key Combining Operators in the Observable Class

» The reduce() operator Maybe<T> reduce
- Reduce this Observable’s values (BiFunction<T, T, T> reducer)
into a single object of the same Observable of Integers from 1..4
type as the emitted items é 3 A',
. R_educti_on is performed using a 0 —>
BiFunction param

» This param is passed the
intermediate result of the

reduction & the current value 3—>(+
e
 This process repeats for each pair of values 10

12

Key Combining Operators in the Observable Class

* The reduce() operator

» Reduce this Observable’s values
into a single object of the same
type as the emitted items

« Reduction is performed using a
BiFunction param

» This param is passed the
intermediate result of the
reduction & the current value

6
 This process repeats for each pair of values

Maybe<T> reduce

(BiFunction<T, T, T> reducer)

Observable of Integers from 1..4

2

‘H@

3

3

—>(4

4

10

13

Key Combining Operators in the Observable Class

* The reduce() operator

» Reduce this Observable’s values
into a single object of the same
type as the emitted items

* The final result is emitted from
the final call as the sole item
of a Maybe

Maybe<T> reduce
(BiFunction<T,

Maybe<T> <

T, T> reducer)

flq~‘£+
——

S

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

Key Combining Operators in the Observable Class
* The reduce() operator Maybe<T> reduce

- Reduce this Observable’s values (BiFunction<T, T, T> reducer)
into a single object of the same
type as the emitted items

* The final result is emitted from
the final call as the sole item
of a Maybe

« An empty Maybe will be returned
if the Observable emits no items

15

Key Combining Operators in the Observable Class
* The reduce() operator Maybe<T> reduce

. , BiFunction<T, T, T> reducer
* Reduce this Observable’s values ()
into a single object of the same

type as the emitted items — ﬁ
ERROS
o

* The final result is emitted from

g;eaflia:;tc)zll as the sole item Y ‘ﬂ@

» The internally accumulated value is discarded upon cancellation or error

16

Key Combining Operators in the Observable Class

* The reduce() operator

0—0—0—

>

« Upstream must signal onComplete()

before accumulator can be emitted

return Observable

.fromArray (bigFractions)

.flatMap (bf ->

multiplyFractions (bf, Schedulers.computation()))
.reduce (BigFraction:

:add)

V a4V ca¥
>

reduce{ (<> D)

Ol

Y

@

\

Sum the results of
async multiplications

See Reactive/Observable/ex3/src/main/java/ObserableEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

Key Combining Operators in the Observable Class

» The reduce() operator Q Q Q L >
V - oY Y

reduce{(<> D) i>@}

« Upstream must signal onComplete()
before accumulator can be emitted

« Sources that are infinite & never
complete will never emit anything g
through this operator

@
2
S,

18

Key Combining Operators in the Observable Class

» The reduce() operator @, O Q '[>
V - oY Y
reduce{(<> D) {>§}

 Upstream must signal onComplete() y

before accumulator can be emitted {)@

« Sources that are infinite & never
complete will never emit anything
through this operator

 An infinite source may lead to a
fatal OutOfMemoryError

1 Error: Out of Memory.

See docs.oracle.com/javase/8/docs/api/java/lang/OutOfMemoryError.html

https://docs.oracle.com/javase/8/docs/api/java/lang/OutOfMemoryError.html

Key Combining Operators in the Observable Class

« The reduce() operator —Q—O—Q i >

v

resl"uce ((‘:"‘,O) — O)
« Project Reactor’s Flux.reduce() R R
operator works the same @ i >
return Flux _//

.fromArray (bigFractions)
.flatMap (bf -> multiplyFractions (bf, Schedulers.parallel()))
.reduce (BigFraction: : add)

- —————— | Sum results of async multjplications

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

Key Combining Operators in the Observable Class

* The reduce() operator reduce

Optional<T> reduce(BinaryOperator<T> accumulator)

Performs a reduction on the elements of this stream, using an associative
accumulation function, and returns an Optional describing the reduced
value, if any. This is equivalent to:

boolean foundAny = false;
T result = null;
for (T element : this stream) {
if (!foundAny) {
foundAny = true;
result = element;

}

else
result = accumulator.apply(result, element);

 Similar to the Stream.reduce()) | |
. return foundAny ? Optional.of(result) : Optional.empty();
method in Java Streams
int result = List
.of(1, 2, 3, 4, 5, 6).stream()
.reduce (0, Math: :addExact) ;

Sum the List values

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

End of Key Combining
Operators in the Observable
Class (Part 2)

22

