
Key Transforming Operators 
in the Observable Class (Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Factory method operators
• Transforming operators
• Transform the values and/or

types emitted by an Observable
• Understand the RxJava flatMap() 

concurrency idiom

return Observable
.fromIterable(bigFractionList)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...



3

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Factory method operators
• Transforming operators
• Transform the values and/or

types emitted by an Observable
• Understand the RxJava flatMap() 

concurrency idiom
• How how to compare & contrast 

flatMap() & map()



4

The RxJava flatMap() 
Concurrency Idiom



5

• flatMap()’s often used when each 
item emitted by a stream needs to 
apply its own threading operators

The RxJava flatMap() Concurrency Idiom

See Reactive/Observable/ex3/src/main/java/ObservableEx.java

return Observable
.fromIterable(bigFractions)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java


6

• flatMap()’s often used when each 
item emitted by a stream needs to 
apply its own threading operators
• This structure is known as the 

“flatMap() concurrency idiom”

The RxJava flatMap() Concurrency Idiom

See dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel

return Observable
.fromIterable(bigFractions)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...

https://dzone.com/articles/rxjava-idiomatic-concurrency-flatmap-vs-parallel


7

• flatMap()’s often used when each 
item emitted by a stream needs to 
apply its own threading operators
• This structure is known as the 

“flatMap() concurrency idiom”

The RxJava flatMap() Concurrency Idiom

Create an Observable BigFraction
stream from a BigFraction List

return Observable
.fromIterable(bigFractionList)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...



8

• flatMap()’s often used when each 
item emitted by a stream needs to 
apply its own threading operators
• This structure is known as the 

“flatMap() concurrency idiom”

The RxJava flatMap() Concurrency Idiom
return Observable
.fromIterable(bigFractionList)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...

Iterate through the Observable 
stream multiplying all the big 

fractions in the parallel thread pool



9

• flatMap()’s often used when each 
item emitted by a stream needs to 
apply its own threading operators
• This structure is known as the 

“flatMap() concurrency idiom”

The RxJava flatMap() Concurrency Idiom
return Observable
.fromIterable(bigFractionList)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...

Each BigFraction in the stream 
is processed concurrently in 

a pool of worker threads



10

• flatMap()’s often used when each 
item emitted by a stream needs to 
apply its own threading operators
• This structure is known as the 

“flatMap() concurrency idiom”

The RxJava flatMap() Concurrency Idiom
return Observable
.fromIterable(bigFractionList)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...

“Lazily” emit a Callable that multiplies two 
BigFraction objects in a nested Observable



11

• flatMap()’s often used when each 
item emitted by a stream needs to 
apply its own threading operators
• This structure is known as the 

“flatMap() concurrency idiom”

The RxJava flatMap() Concurrency Idiom
return Observable
.fromIterable(bigFractionList)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...

Arrange to process each emitted Big 
Fraction in the computation thread pool

See next lesson on “Key Scheduler Operators in the Observable Class (Part 2)”



12

• flatMap()’s often used when each 
item emitted by a stream needs to 
apply its own threading operators
• This structure is known as the 

“flatMap() concurrency idiom”

The RxJava flatMap() Concurrency Idiom
return Observable
.fromIterable(bigFractionList)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

...

After all the concurrent processing 
completes then add all the Big 

Fractions to compute the final sum

See upcoming lesson on `Key Combining Operations in the Observable Class (Part 2)’



13

Comparing Observable 
map() & flatMap()



14

• The map() vs. flatMap() operators
Comparing Observable map() & flatMap()

See en.wikipedia.org/wiki/Rock 'Em_Sock_'Em_Robots

https://en.wikipedia.org/wiki/Rock_%27Em_Sock_%27Em_Robots


15

• The map() vs. flatMap() operators
• map() transforms each value in an 

Observable stream into one value

Comparing Observable map() & flatMap()

See medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

https://medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784


16

• The map() vs. flatMap() operators
• map() transforms each value in an 

Observable stream into one value
• e.g., used for synchronous 1-to-1 

transformations

Comparing Observable map() & flatMap()

The # of output elements equal the # of input elements



17

• The map() vs. flatMap() operators
• map() transforms each value in an 

Observable stream into one value
• flatMap() transforms each value in 

an Observable stream into an 
arbitrary number (0+) values

Comparing Observable map() & flatMap()

See medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784

https://medium.com/mindorks/rxjava-operator-map-vs-flatmap-427c09678784


18

• The map() vs. flatMap() operators
• map() transforms each value in an 

Observable stream into one value
• flatMap() transforms each value in 

an Observable stream into an 
arbitrary number (0+) values
• e.g., intended for asynchronous

1-to-N transformations

Comparing Observable map() & flatMap()

The # of output elements may differ from the # of input elements



19

• The map() vs. flatMap() operators
• map() transforms each value in an 

Observable stream into one value
• flatMap() transforms each value in 

an Observable stream into an 
arbitrary number (0+) values

• flatMap() is used extensively in
RxJava

Comparing Observable map() & flatMap()



20

End of Key Transforming 
Operators in the 

Observable Class (Part 3)


