
Key Transforming Operators
in the Observable Class (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Factory method operators
• Transforming operators
• Transform the values and/or

types emitted by an Observable
• e.g., flatMap() &

flatMapCompletable()

3

Key Transforming Operators
in the Observable Class

4

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously

Key Transforming Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMap

<R> Observable<R> flatMap
(Function

<? super T,
? extends ObservableSource

<? extends R>>
mapper)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

5

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

Key Transforming Operators in the Observable Class
<R> Observable<R> flatMap
(Function

<? super T,
? extends ObservableSource

<? extends R>>
mapper)

6

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource
• An ObservableSource can be

consumed by an Observable

Key Transforming Operators in the Observable Class
<R> Observable<R> flatMap
(Function

<? super T,
? extends ObservableSource

<? extends R>>
mapper)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/ObservableSource.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/ObservableSource.html

7

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are “flattened” & emitted

Key Transforming Operators in the Observable Class
<R> Observable<R> flatMap
(Function

<? super T,
? extends ObservableSource

<? extends R>>
mapper)

8

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are “flattened” & emitted
• They thus can interleave

Key Transforming Operators in the Observable Class

9

Key Transforming Operators in the Observable Class

The # of output elements may
differ from the # of input elements

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are “flattened” & emitted
• They thus can interleave

10

flatMap() can transform values and/
or types of elements it processes

Key Transforming Operators in the Observable Class
• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• Items are emitted based on

applying a function to each item
emitted by this Observable

• That function returns an
ObservableSource

• The returned ObservableSources
are merged & the results of this
merger are “flattened” & emitted
• They thus can interleave

11

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing

Key Transforming Operators in the Observable Class

See next part of the lesson on the RxJava flatMap() concurrency idiom

return Observable
.fromCallable(() -> BigFraction

.reduce(unreducedFraction))

.subscribeOn(scheduler)

.flatMap(reducedFraction ->
Observable
.fromCallable(() ->

reducedFraction
.multiply
(sBigReducedFrac))

.subscribeOn
(scheduler));

12

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing

Key Transforming Operators in the Observable Class

See Reactive/Observable/ex3/src/main/java/ObserveEx.java

return Observable
.fromIterable(bigFractionList)

.flatMap(bf -> Observable
.fromCallable(() -> bf

.multiply(sBigFraction))

.subscribeOn
(Schedulers
.computation()))

.reduce(BigFraction::add)

Return an Observable that emits
multiplied BigFraction objects via the
RxJava flatMap() concurrency idiom

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/ObservableEx.java

13

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way

Key Transforming Operators in the Observable Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#flatMap

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

14

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way
• Similar to the Stream.flatMap()

method in Java Streams

Key Transforming Operators in the Observable Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#flatMap

List<String> a = List.of("d", "g");
List<String> b = List.of("a", "c");
Stream

.of(a, b)

.flatMap(List::stream)

.sorted()

.forEach(System.out::println);
Flatten, sort, & print
two lists of strings

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

15See stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way
• Similar to the Stream.flatMap()

method in Java Streams
• However, Stream.flatMap()

doesn’t support parallelism..

Key Transforming Operators in the Observable Class

List<String> a = List.of("d", "g");
List<String> b = List.of("a", "c");
Stream

.of(a, b).parallel()

.flatMap(List::stream)

.sorted()

.forEach(System.out::println);

https://stackoverflow.com/questions/45038120/parallel-flatmap-always-sequential/66386078

16

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way
• Similar to the Stream.flatMap()

method in Java Streams
• flatMap() doesn’t ensure the order

of the items in the resulting stream

Key Transforming Operators in the Observable Class

17

• The flatMap() operator
• Transform the elements emitted

by this Observable asynchronously
• This operator is often used to

trigger concurrent processing
• Project Reactor’s Flux.flatMap()

operator works the same way
• Similar to the Stream.flatMap()

method in Java Streams
• flatMap() doesn’t ensure the order

of the items in the resulting stream
• Use concatMap() if order matters

Key Transforming Operators in the Observable Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#concatMap

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

18

Key Transforming Operators in the Observable Class
Completable
flatMapCompletable
(Function<? super T,

? extends
CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMapCompletable

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html

19

Key Transforming Operators in the Observable Class
Completable
flatMapCompletable
(Function<? super T,

? extends
CompletableSource>

mapper))

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable, e.g.,
• Maps each element of the

current Observable into
CompletableSource objects

20

Key Transforming Operators in the Observable Class
Completable
flatMapCompletable
(Function<? super T,

? extends
CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/CompletableSource.html

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable, e.g.,
• Maps each element of the

current Observable into
CompletableSource objects

• Subscribes to them & waits for
the completion of the upstream
& all CompletableSource objects

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/CompletableSource.html

21

Key Transforming Operators in the Observable Class
Completable
flatMapCompletable
(Function<? super T,

? extends
CompletableSource>

mapper))

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable, e.g.,
• Maps each element of the

current Observable into
CompletableSource objects

• Subscribes to them & waits for
the completion of the upstream
& all CompletableSource objects

• Returns the new Completable
instance

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Completable.html

22

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

See medium.com/@daniel.rodak/combining-rxjava2-completable-with-observable-6dda410a3c83

mailto:medium.com/@daniel.rodak/combining-rxjava2-completable-with-observable-6dda410a3c83

23

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())
• Used to integrate w/the RxJava

AsyncTaskBarrier framework

See Reactive/Observable/ex3/src/main/java/utils/AsyncTaskBarrier.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/utils/AsyncTaskBarrier.java

24

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())
• Used to integrate w/the RxJava

AsyncTaskBarrier framework
• i.e., the Completable isn’t

triggered until all async
processing is finished

Observable
.fromIterable(sTasks)

.map(Supplier::get)

.flatMapCompletable(c -> c)

.toSingleDefault((long)
sTasks.size());

See Reactive/Observable/ex3/src/main/java/utils/AsyncTaskBarrier.java

Map each Observable element into a
CompletableSource, subscribes to them,

& wait until the upstream & all
CompletableSource objects complete

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex3/src/main/java/utils/AsyncTaskBarrier.java

25

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

• Project Reactor has no operator
like flatMapCompletable()

26

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

• Project Reactor has no operator
like flatMapCompletable()
• However, Project Reactor’s Flux.

then() & Mono.then() operators
provide a similar capability when used in conjunction with flatMap()

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#then

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html

27

• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

• Project Reactor has no operator
like flatMapCompletable()
• However, Project Reactor’s Flux.

then() & Mono.then() operators
provide a similar capability when used in conjunction with flatMap()
• Used to integrate w/the Project Reactor AsyncTaskBarrier framework

Key Transforming Operators in the Observable Class

See Reactive/flux/ex3/src/main/java/utils/AsyncTaskBarrier.java

Flux
.fromIterable(sTasks)

.flatMap(Supplier::get)

.collectList()

.onErrorContinue(errorHandler)

.flatMap(__ -> ...);

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/utils/AsyncTaskBarrier.java

28

Key Transforming Operators in the Observable Class
• The flatMapCompletable() operator
• “flatMaps” an Observable into a

Completable
• The Completable returned waits

for the upstream’s Observable
terminal event (onComplete())

• Project Reactor has no operator
like flatMapCompletable()

• The CompletableFuture.allOf()
method can be combined with
the Java Streams collector
framework for a similar effect

Stream
.generate(() ->

makeBigFraction
(new Random(), false))

.limit(sMAX_FRACTIONS)

.map(reduceAndMultiplyFraction)

.collect(FuturesCollector
.toFuture())

.thenAccept
(this::sortAndPrintList);

See Java8/ex19/src/main/java/utils/FuturesCollector.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex19/src/main/java/utils/FuturesCollector.java

29

End of Key Transforming
Operators in the

Observable Class (Part 2)

