
Key Action Operators in 
the Observable Class (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Concurrency & scheduler operators
• Factory method operators
• Action operators
• These operators don’t modify an

Observable, but instead just use 
it for side effects
• e.g., doFinally() &

doOnComplete()



3

Key Action Operators 
in the Observable Class



4

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#doFinally

Observable<T> doFinally
(Action onFinally)

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html


5

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• The param is called when Observable 

signals onError() or onComplete() or 
is disposed by the downstream

Observable<T> doFinally
(Action onFinally)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Action.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Action.html


6

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• The param is called when Observable 

signals onError() or onComplete() or 
is disposed by the downstream
• Action is a functional interface 

similar to Runnable but allows 
throwing a checked exception

Observable<T> doFinally
(Action onFinally)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Action.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Action.html


7

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• The param is called when Observable 

signals onError() or onComplete() or 
is disposed by the downstream
• Action is a functional interface 

similar to Runnable but allows 
throwing a checked exception
• i.e., it is a “callback” that 

only has side-effects

See en.wikipedia.org/wiki/Callback_(computer_programming)

Observable<T> doFinally
(Action onFinally)

https://en.wikipedia.org/wiki/Callback_(computer_programming)


8

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• The param is called when Observable 

signals onError() or onComplete() or 
is disposed by the downstream
• Action is a functional interface 

similar to Runnable but allows 
throwing a checked exception

• Action is always called regardless 
of successful or error completion
• Similar to a C++ destructor

Contrast this doFinally() behavior with the doOnComplete() behavior

Observable<T> doFinally
(Action onFinally)



9

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• The param is called when Observable 

signals onError() or onComplete() or 
is disposed by the downstream

• Returns the new Observable instance

Observable<T> doFinally
(Action onFinally)

The type or the value of elements 
that is processed is unchanged



10

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• Does not operate by default on a

particular Scheduler
• i.e., it uses the current scheduler



11

Observable
.create(ObservableEx::emitAsync) 
.observeOn(Schedulers.newThread())
.map(bigInteger -> ObservableEx

.checkIfPrime(bigInteger, sb))
.doFinally(() -> BigFractionUtils.display(sb.toString()))
...

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• Does not operate by default on a

particular Scheduler
• i.e., it uses the current scheduler

See Reactive/Observable/ex2/src/main/java/ObservableEx.java

Print BigInteger objects 
to aid with debugging

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex2/src/main/java/ObservableEx.java


12

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• Does not operate by default on a

particular Scheduler
• i.e., it uses the current scheduler

See en.wikipedia.org/wiki/Side_effect_(computer_science)

Observable
.create(ObservableEx::emitAsync)
.observeOn(Schedulers.newThread())
.map(bigInteger -> ObservableEx

.checkIfPrime(bigInteger, sb))
.doFinally(() -> BigFractionUtils.display(sb.toString()))
...

Only a “side-effect”

https://en.wikipedia.org/wiki/Side_effect_(computer_science)


13

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• Does not operate by default on a

particular Scheduler
• Project Reactor’s operator Flux 

.doFinally() works the same

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#doFinally

Scheduler subscriber = Schedulers.newParallel("subscriber", 1);
Flux
.create(makeAsyncFluxSink())
.publishOn(subscriber)
.doFinally(__ -> subscriber

.dispose()) ...
Only a “side-effect”

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


14

Key Action Operators in the Observable Class
• The doFinally() operator
• Calls the specified Action after

the current Observable terminates
• Does not operate by default on a

particular Scheduler
• Project Reactor’s operator Flux 

.doFinally() works the same
• The Java Streams framework has

no operations like doFinally()
• Any cleanup can be done after

the stream’s terminal operation
completes synchronously

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html


15

Key Action Operators in the Observable Class
• The doOnComplete() operator
• Calls the specified Action after

the current Observable completes

Observable<T> doOnComplete
(Action onComplete)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#doOnComplete

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html


16

Key Action Operators in the Observable Class
• The doOnComplete() operator
• Calls the specified Action after

the current Observable completes
• The Action parameter is called 

when the Observable signals 
onComplete()
• Action is a functional interface 

similar to Runnable but allows 
throwing a checked exception

Observable<T> doOnComplete
(Action onComplete)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Action.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Action.html


17

Key Action Operators in the Observable Class
• The doOnComplete() operator
• Calls the specified Action after

the current Observable completes
• The Action parameter is called 

when the Observable signals 
onComplete()
• Action is a functional interface 

similar to Runnable but allows 
throwing a checked exception 
• i.e., again, it’s a callback 

that only has side-effects

Observable<T> doOnComplete
(Action onComplete)

See en.wikipedia.org/wiki/Callback_(computer_programming)

https://en.wikipedia.org/wiki/Callback_(computer_programming)


18

Key Action Operators in the Observable Class
• The doOnComplete() operator
• Calls the specified Action after

the current Observable completes
• The Action parameter is called 

when the Observable signals 
onComplete()
• Action is a functional interface 

similar to Runnable but allows 
throwing a checked exception

• Action is called only on successful 
completion, but not when errors
occur

Observable<T> doOnComplete
(Action onComplete)

Contrast this doOnComplete() behavior with the doFinally() behavior



19

Key Action Operators in the Observable Class
• The doOnComplete() operator
• Calls the specified Action after

the current Observable completes
• The Action parameter is called 

when the Observable signals 
onComplete()

• Returns the new Observable 
instance

Observable<T> doOnComplete
(Action onComplete)

Can’t change the type or the 
value of elements it processes 



20

Key Action Operators in the Observable Class
• The doOnComplete() operator
• Calls the specified Action after

the current Observable completes
• doOnComplete() does not 

operate by default on a 
particular Scheduler

Observable
.create(ObservableEx::emitInterval)
.map(bigInt -> ObservableEx.checkIfPrime(bigInt, sb))
.doOnComplete(() -> BigFractionUtils.display(sb.toString()))
...

See Reactive/Observable/ex2/src/main/java/ObservableEx.java

Print BigIntegers to aid debugging

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex2/src/main/java/ObservableEx.java


21

Key Action Operators in the Observable Class
• The doOnComplete() operator
• Calls the specified Action after

the current Observable completes
• doOnComplete() does not 

operate by default on a 
particular Scheduler

Observable
.create(ObservableEx::emitInterval)
.map(bigInt -> ObservableEx.checkIfPrime(bigInt, sb))
.doOnComplete(() -> BigFractionUtils.display(sb.toString()))
...

See Reactive/Observable/ex2/src/main/java/ObservableEx.java

Only a “side-effect”

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex2/src/main/java/ObservableEx.java


22

Key Action Operators in the Observable Class
• The doOnComplete() operator
• Calls the specified Action after

the current Observable completes
• doOnComplete() does not 

operate by default on a 
particular Scheduler

• The Flux.doOnComplete() operator 
in Project Reactor works the same

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#doOnComplete

Flux
.create(makeAsyncFluxSink())
...
.map(bigInt -> FluxEx.checkIfPrime(bigInt, sb))
.doOnComplete(() -> BigFractionUtils.display(sb.toString()))
...

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


23

End of Key Action Operators 
in the Observable Class

(Part 2)


