
Key Action Operators in 
the Observable Class (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Recognize key Observable operators
• Factory method operators
• Transforming operators
• Action operators
• These operators don’t modify an

Observable, but instead use it 
for side effects
• e.g., doOnNext()



3

Key Action Operators 
in the Observable Class



4

Key Action Operators in the Observable Class
• The doOnNext() operator
• Add a behavior triggered when

an Observable emits an item

Observable<T> doOnNext
(Consumer<? super T> onNext)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#doOnNext

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html


5

Key Action Operators in the Observable Class
• The doOnNext() operator
• Add a behavior triggered when 

an Observable emits an item
• The behavior is passed as a 

consumer param that’s called
on successful completion

Observable<T> doOnNext
(Consumer<? super T> onNext)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Consumer.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/functions/Consumer.html


6

Key Action Operators in the Observable Class
• The doOnNext() operator
• Add a behavior triggered when 

an Observable emits an item
• The behavior is passed as a 

consumer param that’s called
on successful completion
• i.e., it is a “callback” that 

typically has a “side-effect”

Observable<T> doOnNext
(Consumer<? super T> onNext)

See en.wikipedia.org/wiki/Callback_(computer_programming)

https://en.wikipedia.org/wiki/Callback_(computer_programming)


7

Key Action Operators in the Observable Class
• The doOnNext() operator
• Add a behavior triggered when 

an Observable emits an item
• The behavior is passed as a 

consumer param that’s called
on successful completion

• Returns an Observable that is
not modified at all
• i.e., the type and/or value of 

its elements are not changed

Observable<T> doOnNext
(Consumer<? super T> onNext)



8

Key Action Operators in the Observable Class
• The doOnNext() operator
• Add a behavior triggered when 

an Observable emits an item
• Used primary for debugging, 

logging, and/or getting visibility
into an Observable chain

See Reactive/Observable/ex1/src/main/java/ObservableEx.java

Observable
.fromIterable(bigFractionList)
.doOnNext(bf -> 

logBigFraction(sUnreducedFraction, bf, sb))
...

Log each BigFraction value 
on success (otherwise skip)

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/Observable/ex1/src/main/java/ObservableEx.java


9

Key Action Operators in the Observable Class
• The doOnNext() operator
• Add a behavior triggered when 

an Observable emits an item
• Used primary for debugging, 

logging, and/or getting visibility
into an Observable chain

• Project Reactor’s operator Flux 
.doOnNext() works the same

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#doOnNext

Flux
.fromIterable(bigFractionList)
.doOnNext(bf -> 

logBigFraction(sUnreducedFraction, bf, sb))
...

Log each BigFraction value 
on success (otherwise skip)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html


10

Key Action Operators in the Observable Class
• The doOnNext() operator
• Add a behavior triggered when 

an Observable emits an item
• Used primary for debugging, 

logging, and/or getting visibility
into an Observable chain

• Project Reactor’s operator Flux 
.doOnNext() works the same

• Similar to Stream.peek() method
in Java Streams 

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek

List<String> collect = List
.of("a", "b", "c").stream().peek(System.out::println)
.map(String::toUpperCase).collect(toList());

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html


11

End of Key Action Operators 
in the Observable Class

(Part 1)


