
Overview of the BigFraction Case Studies

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

3

Learning Objectives in this Part of the Lesson
• Understand key classes in

the RxJava API
• Be aware of the structure &

functionality of the BigFraction
case studies
• These case studies showcase many

operators in the RxJava Single,
Observable, & Flowable classes

4

Overview of the
BigFraction Class

10

Overview of the BigFraction Class
• Upcoming lessons show how to apply

RxJava features in the context of a
BigFraction class

See LiveLessons/blob/master/Java8/ex8/src/utils/BigFraction.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex8/src/utils/BigFraction.java

11

Overview of the BigFraction Class
• Upcoming lessons show how to apply

RxJava features in the context of a
BigFraction class
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator

See docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html

12

Overview of the BigFraction Class
• Upcoming lessons show how to apply

RxJava features in the context of a
BigFraction class
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator
• Factory methods to “reduce” fractions
• 44/55 → 4/5
• 12/24 → 1/2
• 144/216 → 2/3

13

Overview of the BigFraction Class
• Upcoming lessons show how to apply

RxJava features in the context of a
BigFraction class
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator
• Factory methods to “reduce” fractions
• Factory methods to create “non-

reduced” fractions (& then reduce them)
• e.g., 12/24 (→ 1/2)

14

Overview of the BigFraction Class
• Upcoming lessons show how to apply

RxJava features in the context of a
BigFraction class
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator
• Factory methods to “reduce” fractions
• Factory methods to create “non-

reduced” fractions (& then reduce them)
• Arbitrary-precision fraction arithmetic
• e.g., 18/4 !2/3 = 3

15

Overview of the BigFraction Class
• Upcoming lessons show how to apply

RxJava features in the context of a
BigFraction class
• Arbitrary-precision fraction, utilizing

BigIntegers for numerator & denominator
• Factory methods to “reduce” fractions
• Factory methods to create “non-

reduced” fractions (& then reduce them)
• Arbitrary-precision fraction arithmetic
• Create a mixed fraction from an improper

fraction
• e.g., 18/4 → 4 1/2

See www.mathsisfun.com/improper-fractions.html

http://www.mathsisfun.com/improper-fractions.html

16

Overview of the
BigFraction Case Studies

18

Overview of the BigFraction Case Studies
• These case studies show how to

create, reduce, multiply, & display
BigFraction objects synchronously,
asynchronously, & concurrently
using RxJava framework features

22

Overview of the BigFraction Case Studies
• The RxJava Single case studies

show how to create, reduce, multiply,
& display BigFraction objects using
many Single features
• e.g., fromCallable(), zipWith(),

zipArray(), doOnSuccess(), map(),
ignoreElement(), subscribeOn(),
ambArray(), & the parallel thread
pool

BigFraction unreducedFraction =
makeBigFraction(...);

return Single
.fromCallable(() -> BigFraction

.reduce(unreducedFraction))
.subscribeOn

(Schedulers.single())
.map(result ->

result.toMixedString())
.doOnSuccess(result ->

System.out.println
("big fraction = "
+ result + "\n"))

.ignoreElement();

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single

23

Overview of the BigFraction Case Studies
• The RxJava Observable case

studies show how to create,
reduce, multiply, & display Big
Fraction objects using many
Observable features
• e.g., fromCallable(), map(),

create(), interval(), filter(),
doOnNext(), blockingSubscribe(),
take(), doOnComplete(),
subscribe(), flatMap(),
fromIterable(), subscribeOn(),
observeOn(), range(), count(),
collect(), & various thread pools

return Observable
.fromArray(bigFractionList)

.subscribeOn(scheduler)

.flatMap(reducedFraction ->
Observable
.fromCallable(() ->

reducedFraction.multiply
(sBigReducedFraction))

.subscribeOn
(scheduler))

.reduce(BigFraction::add);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Observable

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Single

24

Overview of the BigFraction Case Studies
• The RxJava Flowable case studies

show how to create, reduce, multiply,
& display Big Fraction objects using
Flowable & ParallelFlowable features
• e.g., fromArray(), parallel(),

runOn(), flatMap(), reduce(),
sequential(), & the Scheduler.
computation() thread pool

return Flowable
.fromArray(bigFractionList)

.parallel()

.runOn(Scheduler.computation())

.flatMap(bigFraction ->
bigFraction.multiply

(sBigReducedFraction))

.sequential()

.reduce(BigFraction::add)

...

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flowable

25

End of Overview of the
BigFraction Case Studies

