Overview of Key Classes in the RxJava API

Douglas C. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderhilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

This is the time_line of the These are items emitted This vertical line indicates
Observable. Time flows by the Observable.

; that the Observable has
from left to right. /// \/\\ completed successfully.

; These dotted lines and

. . . f\ this box indicate that a
transformation is being
flip <—applied to the Observable.

The text inside the box
5 5 . Z&// shows the nature of the
v A\ : ; transformation.
b
5= .)

This Observable is
the result of the
transformation.

« Understand key classes in
the RxJava API

- - -
<
i
<
<
<

If for some reason the Observable
terminates abnormally, with an error, the
vertical line is replaced by an X.

This is the timeline of the This is the item emitted

Single. Time flows from by the Single. ”. O gome teasch thg Single Flowa ble &
left to right terminates abnormally, with an error,

this is indicated with an X. Observa ble

These dotted lines and
\/ this box indicate that a

Y
transformation is being
“ flip j<— applied to the Single.

The text inside the box
\/

shows the nature of the

% transformation.
5 —X

This Single is the result

-
of the transformation. SI ng Ie

Key Classes in
the RxJava API

Key Classes in the RxJava API

« There are three key classes . .
in the RxJava API atid

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Single — Completes successfully
or with failure, may or may not
emit a single value

Class Single<T>

java.lang.Object
io.reactivex.rxjava3.core.Single<T>

Type Parameters:
T - the type of the item emitted by the Single

All Implemented Interfaces:
SingleSource<T>

Direct Known Subclasses:
SingleSubject

public abstract class Single<T>
extends Object
implements SingleSource<T>

The Single class implements the Reactive Pattern for a single value response.

Single behaves similarly to Observable except that it can only emit either a single
successful value or an error (there is no onComplete notification as there is for an
Observable).

The Single class implements the SingleSource base interface and the default
consumer type it interacts with is the SingleObserver via the
subscribe(SingleObserver) method.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Single.html

Key Classes in the RxJava API

* There are three key classes BigFraction unreducedFraction =
in the RxJava API makeBigFraction(...);
« Single — Completes successfully _
. i Single
or _Nlth fa”ure’ may or may not .fromCallable(() -> BigFraction
emit a Smgle value .reduce (unreducedFraction))
 Similar to a Java Completable . subscribeOn
Future or an async Optional<T> (Schedulers.single())

.map (result ->
result. toMixedString())
.doOnSuccess (result ->
System.out.println
("big fraction = "
+ result + "\n"));

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Single — Completes successfully

or with failure, may or may not M |

o & >
emit a single value 5 5
\ A

operator (...)

e Can be documented via a
“marble diagram”

o
) &
\j

See medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

mailto:medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

Key Classes in the RxJava API

* There are three key classes

in the RxJava API This is the timeline of a Single,

where time flows from [left to right

« Single — Completes successfully \
or with failure, may or may not M | 5
- : A4 l
emit a single value 5 5
v v

operator (...)

 Can be documented via a : :
“marble diagram” PN)v(
N\

>

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Single — Completes successfully
or with failure, may or may not
emit a single value

e Can be documented via a
“marble diagram”

This is the item emitted by the Single

operator (...)

o
) &
\j

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Single — Completes successfully
or with failure, may or may not
emit a single value

e Can be documented via a
“marble diagram”

These dotted lines & this box indicate that a
transformation is being applied to the Single

\) |
\\/ —
v v
operator (...)
o s
O \)(>

The text inside the box indicates
the type of transformation

10

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Single — Completes successfully

or with failure, may or may not

emit a single value

« Can be documented via a

“marble diagram”

operator (...)

This item is the result
of the transformation

o
) &

11

Key Classes in the RxJava API

* There are three key classes

in the RxJava API 7-/'7/:5' vertical line indicates the
_ Single completed successtully
« Single — Completes successfully \
or with failure, may or may not M | 5
emit a single value \'/ '
v v

operator (...)

 Can be documented via a : :
“marble diagram” PN)v(
(%

|

12

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Single — Completes successfully
or with failure, may or may not
emit a single value

e Can be documented via a
“marble diagram”

If the Single terminates abnormally
the vertical line is replaced by an X

13

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Single — Completes successfully
or with failure, may or may not
emit a single value

* Provides many operators

Factory method operators
Transforming operators
Action operators

Concurrency & scheduler
operators

Combining operators
Suppressing operators
Blocking operators
etc.

14

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Single — Completes successfully
or with failure, may or may not
emit a single value

« Maybe is a variant of Single

Class Maybe<T>

java.lang.Object
io.reactivex.rxjava3.core.Maybe<T>

Type Parameters:
T - the value type

All Implemented Interfaces:
MaybeSource<T>

Direct Known Subclasses:
MaybeSubject

public abstract class Maybe<T>
extends Object
implements MaybeSource<T>

The Maybe class represents a deferred computation and emission of a single value, no value at
all or an exception.

The Maybe class implements the MaybeSource base interface and the default consumer type
it interacts with is the MaybeObserver via the subscribe(MaybeObserver) method.

The Maybe operates with the following sequential protocol:

onSubscribe (onSuccess | onError | onComplete)?

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Maybe.html

Key Classes in the RxJava API

* There are three key classes BigInteger factorial (BigInteger n) {
in the RxJava API return Observable

- Single — Completes successfully -rangelong(l, n.longValue())

or with failure, may or may not -map (BigInteger: :valueOf)
! y Y .reduce (BigInteger: :multiply)

emit a single value N

reauce() returns a Maybe, which
may contain no value at all if n is 0

.blockingGet (BigInteger.ONE) ;

« Maybe is a variant of Single
It may emit a single value, no value at all, or an exception

16

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Observable — Emits an indefinite
of events (zero to infinite) &
may complete successfully or fail

Class Observable<T>

java.lang.Object
io.reactivex.rxjava3.core.Observable<T>

Type Parameters:
T - the type of the items emitted by the Observable

All Implemented Interfaces:
ObservableSource<T>

Direct Known Subclasses:
ConnectableObservable, GroupedObservable, Subject

public abstract class Observable<T>
extends Object
implements ObservableSource<T>

The Observable class is the non-backpressured, optionally multi-valued base
reactive class that offers factory methods, intermediate operators and the ability to
consume synchronous and/or asynchronous reactive dataflows.

Many operators in the class accept ObservableSource(s), the base reactive interface
for such non-backpressured flows, which Observable itself implements as well.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Observable — Emits an indefinite
of events (zero to infinite) &
may complete successfully or fail

 Similar to an async Java stream

* i.e., completable futures used
with a Java stream

return Observable

fromArray (bigFractionList)

.subscribeOn (scheduler)

.flatMap (reducedFraction ->

Observable
.fromCallable(() ->
reducedFraction.multiply
(sBigReducedFraction))

.subscribeOn
(scheduler))

.reduce (BigFraction: :add) ;

18

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

oo

« Observable — Emits an indefinite v v v oy
of events (zero to infinite) &
may complete successfully or fail

operator (...)

v
y
>
« Can also be documented via a P ‘ X
marble diagram

See medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

mailto:medium.com/@jshvarts/read-marble-diagrams-like-a-pro-3d72934d3ef5

Key Classes in the RxJava API

* There are three key classes

in the RxJava API This is the timeline of an Observable,

where time flows from left to right

e oo

« Observable — Emits an indefinite v v v oy
of events (zero to infinite) &
may complete successfully or fail

operator (...)

4

v

() \/

» Can also be documented via a N/ ‘ X
marble diagram

20

Key Classes in the RxJava API

* There are three key classes : _ " p
in the RxJava API These are the items emitted by the Observable

6o

operator (...)

« Observable — Emits an indefinite
of events (zero to infinite) &
may complete successfully or fail

4

v
() \/
>
» Can also be documented via a N/ ‘ X
marble diagram

21

Key Classes in the RxJava API

- There are three key classes These dotted lines & this box indicate that a
in the RxJava API transformation is being applied to the Observable
\,/ \\/
« Observable — Emits an indefinite v

of events (zero to infinite) & operator (...)
may complete successfully or fail : —

4 4
« Can also be documented via a N~
marble diagram

% >
\

The text inside the box indicates
the type of transformation

22

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

OO0+

« Observable — Emits an indefinite v v v oy
of events (zero to infinite) &
may complete successfully or fail

operator (...)

v 4

O-—@—%—»

e Can also be documented via a Y
. \ /
marble diagram

These items are the result
of the transformation

23

Key Classes in the RxJava API

* There are three key classes

in the RxJava API This vertical line indicates the
Observable completed successtully

® 0ol

« Observable — Emits an indefinite v v v oy
of events (zero to infinite) &
may complete successfully or fail

operator (...)

4

v

() \/

» Can also be documented via a N/ ‘ X
marble diagram

24

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Observable — Emits an indefinite
of events (zero to infinite) &
may complete successfully or fail

e Can also be documented via a

OO O +»

v v vV v

operator (...)

v

]
O‘k\’

marble diagram

If an Observable terminates abnormally
the vertical line is replaced by an X

25

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

« Observable — Emits an indefinite
of events (zero to infinite) &
may complete successfully or fail

* Provides many operators

Factory method operators
Transforming operators

Action operators

Concurrency & scheduler operators

« Combining operators

Terminal operators
Suppressing operators
Blocking operators
etc.

26

Key Classes in the RxJava API

* There are three key classes
in the RxJava API

* Flowable — Generalizes Observable
to support backpressure

Class Flowable<T>

java.lang.Object
io.reactivex.rxjava3.core.Flowable<T>

Type Parameters:
T - the type of the items emitted by the Flowable

All Implemented Interfaces:
Publisher<T>

Direct Known Subclasses:
ConnectableFlowable, FlowableProcessor, GroupedFlowable

public abstract class Flowable<T>
extends Object
implements Publisher<T>

The Flowable class that implements the Reactive Streams Publisher
Pattern and offers factory methods, intermediate operators and the
ability to consume reactive dataflows.

Reactive Streams operates with Publishers which Flowable extends.
Many operators therefore accept general Publishers directly and allow
direct interoperation with other Reactive Streams implementations.

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html

Key Classes in the RxJava API

* There are three key classes Publisher Subscriber
in the RxJava API . request(3)
onNext()
. onNext()

. onNext() :
O
O

Y
000

* Flowable — Generalizes Observable
to support backpressure

» The subscriber indicates to the publisher how much data it can consume

See www.baeldung.com/rxjava-backpressure

http://www.baeldung.com/rxjava-backpressure

Key Classes in the RxJava API

» There are three key classes return Flowable
in the RxJava API .fromArray (bigFractions)
.parallel ()

.runOn (scheduler)
.flatMap (bigFraction ->
bigFraction.multiply
(sBigReducedFraction))
.sequential ()

.reduce (BigFraction: :add)

* Flowable — Generalizes Observable
to support backpressure

« A Flowable can be converted to a ParallelFlowable

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/parallel/ParallelFlowable.html

End of Overview of Key
Classes in the RxJava API

30

