
Evaluating Java Programming Paradigms

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the key benefits & principles underlying the reactive programming

paradigm
• Know the Java reactive streams API & popular implementations of this API
• Learn how Java reactive streams maps to key reactive programming principles
• Recognize how reactive programming

compares with other Java paradigms
• e.g., OO programming, & sync/

async functional programming

3

Learning Objectives in this Part of the Lesson
• Understand the key benefits & principles underlying the reactive programming

paradigm
• Know the Java reactive streams API & popular implementations of this API
• Learn how Java reactive streams maps to key reactive programming principles
• Recognize how reactive programming

compares with other Java paradigms
• Be aware of the pros & cons of reactive

streams platforms

4

Comparing Reactive
Programming with
Other Paradigms

5

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)

6

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams

byte[] downloadContent(URL url) {
byte[] buf = new byte[BUFSIZ];
ByteArrayOutputStream os =
new ByteArrayOutputStream();

InputStream is = url.openStream();

for (int bytes;
(bytes = is.read(buf)) > 0;)

os.write(buf, 0, bytes); ...

7

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects

Streams List<Image> imgs = getInput()
.parallelStream()
.filter(not(this::urlCached))
.map(this::downloadImage)
.flatMap(this::applyFilters)
.collect(toList());

8

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)
CompletableFuture
.supplyAsync(reduce)
.thenApply

(BigFraction
::toMixedString)

.thenAccept
(System.out::println);

9

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)List<Image> imgs = getInput()
.stream()
.map(checkUrlCachedAsync)
.map(downloadImageAsync)
.flatMap(applyFiltersAsync)
.collect(toFuture())
.thenApply(logResults)
.join(); ...

10

• Reactive programming is one of several Java programming paradigms
Comparing Reactive Programming with Other Paradigms

Si
ng

le

va
lu

e
M

ul
tip

le

va
lu

es

Synchronous Asynchronous

Objects Completable
Futures

Reactive Streams
(& Streams +

CompletableFutures)
List<Image> imgs = Observable
.fromIterable(Options.

instance().getUrlList())
.parallel(parallelism)
.runOn(scheduler)
.map(downloadAndStoreImage)
.sequential()
.collect(toList())
.blockingGet();

12

Pros & Cons of Java
Reactive Streams Platforms

13

Responsive

Resilient

Message-
driven

Elastic

• Java reactive streams implementations
apply reactive programming principles
to achieve several benefits

Pros & Cons of Java Reactive Streams Platforms

14

• Java reactive streams implementations
apply reactive programming principles
to achieve several benefits
• Support concurrency with a

minimal number of threads
via a range of thread pools

Pros & Cons of Java Reactive Streams Platforms

15

• Java reactive streams implementations
apply reactive programming principles
to achieve several benefits
• Support concurrency with a

minimal number of threads
via a range of thread pools
• Scale up performance with

relatively few resources

Pros & Cons of Java Reactive Streams Platforms

See dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

16

• Java reactive streams implementations
apply reactive programming principles
to achieve several benefits
• Support concurrency with a

minimal number of threads
via a range of thread pools

• Explicit synchronization and/or
threading is rarely needed when
applying these frameworks

Pros & Cons of Java Reactive Streams Platforms

See dzone.com/articles/spring-boot-20-webflux-reactive-performance-testAlleviates many accidental & inherent complexities of concurrency/parallelism

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

17

• Java reactive streams implementations
apply reactive programming principles
to achieve several benefits
• Support concurrency with a

minimal number of threads
via a range of thread pools

• Explicit synchronization and/or
threading is rarely needed when
applying these frameworks

Pros & Cons of Java Reactive Streams Platforms

These benefits are not unique to reactive streams, however!!

Reactive
Streams

Parallel Streams Completable Futures

18

• However, reactive programming
isn’t appropriate in all situations

Pros & Cons of Java Reactive Streams Platforms

See www.youtube.com/watch?v=z0a0N9OgaAA

To
ta

l O
w

ne
rs

hi
p

Co
st

System Scale & Complexity

http://www.youtube.com/watch?v=z0a0N9OgaAA

19

• However, reactive programming
isn’t appropriate in all situations

Pros & Cons of Java Reactive Streams Platforms

It’s essential to master the learning curve of reactive programming!

System Scale & Complexity
Performance

Productivity

To
ta

l O
w

ne
rs

hi
p

Co
st

20

End of Evaluating Java
Programming Paradigms

