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Learning Objectives in this Part of the Lesson
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Learning Objectives in this Part of the Lesson

« Be aware of the pros & cons of reactive
streams platforms




Comparing Reactive
Programming with
Other Paradigms
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Comparing Reactive Programming with Other Paradigms

Reactive programming is one of several Java programming paradigms
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Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms
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byte[] downloadContent (URL url) {

byte[] buf = new byte[BUFSIZ];

Streams —
ByteArrayOutputStream os =

new ByteArrayOutputStream() ;

InputStream is = url.openStream() ;

Aﬁiiii for (int bytes;
(bytes = is.read(buf)) > 0;)

Objects ! os.write(buf, 0, bytes); . )
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Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms
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E—g Streams List<Image> imgs = getInput ()

3 S .parallelStream ()

= i .filter (not (this: :urlCached))
.map (this: :downloadImage)
.flatMap (this: :applyFilters)
.collect(toList()) ;
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Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms
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Comparing Reactive Programming with Other Paradigms

« Reactive programming is one of several Java programming paradigms
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List<Image> imgs = getInput()
.stream/()
.map (checkUrlCachedAsync)
.map (downloadImageAsync)
.flatMap (applyFiltersAsync)
.collect (toFuture())
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.thenApply (logResults)
.join() ;
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Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms
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-%3 < Reactive Streams
3 S| List<Image> imgs = Observable[~ (& Streams +
= .fromIterable (Options. CompletableFutures)
instance () .getUrlList())

.parallel (parallelism)

.runOn (scheduler)
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s 6 -sequentia ()_ Futures
(7] .collect (toList())

! .blockingGet () ; ;
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Pros & Cons of Java
Reactive Streams Platforms
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Pros & Cons of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles Responsive
to achieve several benefits

Message-
driven
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Pros & Cons of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles
to achieve several benefits
« Support concurrency with a

minimal number of threads
via a range of thread pools

Name

Schedulers.computation()

Schedulers.immed iate()

Schedulers.iof)

Schedulers.trampoline()

Schedulers.newThread()

Schedulers.test()

Schedulers.from(Executor e)

Description

Schedules computation bound work
(ScheduledExecutorSenice with pool size = NCPU, LRU
worker select strategy)

Schedules work on current thread

/O bound work (ScheduledExecutorService with growing
thread pool)

Queues work on the current thread
Creates new thread for every unit of work
Schedules work on scheduler supporting virtual time

Schedules work to be executed on provided executor
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Pros & Cons of Java Reactive Streams Platforms

» Java reactive streams implementations (500ms backend service)
apply reactive programming principles #°®
to achieve several benefits 3200

3000

 Support concurrency with a 2500

minimal number of threads 2000
via a range of thread pools

1500
_ 1000 /
 Scale up performance with e
relatively few resources 0

500
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Concurrent users

== Synchronous
~&-= Reactive

rriliseconds {35th percentile)

See dzone.com/articles/spring-boot-20-webflux-reactive-performance-test



https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Pros & Cons of Java Reactive Streams Platforms
 Java reactive streams implementations
apply reactive programming principles
to achieve several benefits

 Explicit synchronization and/or
threading is rarely needed when
applying these frameworks

Alleviates many accidental & inherent complexities of concurrency/parallelism



https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Pros & Cons of Java Reactive Streams Platforms

 Java reactive streams implementations  Parallel Streams Completable Futures
apply reactive programming principles _ [EEEESS..G] T
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These benefits are not unique to reactive streams, however!!




Pros & Cons of Java Reactive Streams Platforms

« However, reactive programming s« .
isnt appropriate in all situations dimpimiy
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Total Ownership Cost

System Scale & Complexity

See www.youtube.com/watch?v=z0a0N90gaAA



http://www.youtube.com/watch?v=z0a0N9OgaAA

Pros & Cons of Java Reactive Streams Platforms

« However, reactive programming s« :
isnt appropriate in all situations B

4X
3X

2X

1X

Productivity

0X

small startup

Total Ownership Cost

Performance

System Scale & Complexity

It's essential to master the learning curve of reactive programming!




End of Evaluating Java
Programming Paradigms
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