Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

jve Progra,,,
eact s

—

« Recognize how reactive programming
compares with other Java paradigms

* e.g., O0 programming, & sync/ _|_
async functional programming

Reactive Streams
(& Streams +
CompletableFutures)

Streams

Multiple
values

Completable

Objects Futures

Single
value

>

Synchronous Asynchronous

Learning Objectives in this Part of the Lesson

« Be aware of the pros & cons of reactive
streams platforms

Comparing Reactive
Programming with
Other Paradigms

4

Comparing Reactive Programming with Other Paradigms

Reactive programming is one of several Java programming paradigms
: ro

a

L) ®e @
o v .
B 3 Streams Reactive Streams
33 (& Streams +

= CompletableFutures)
()

- ; Completable

-g ‘_;’ Objects Futures

7))

Asynchronous

Synchronous

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

~
byte[] downloadContent (URL url) {

byte[] buf = new byte[BUFSIZ];

Streams —
ByteArrayOutputStream os =

new ByteArrayOutputStream() ;

InputStream is = url.openStream() ;

Aﬁiiii for (int bytes;
(bytes = is.read(buf)) > 0;)

Objects ! os.write(buf, 0, bytes); .)

Multiple
values

Single
value

Asynchronous

Synchronous

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

@ e

E—g Streams List<Image> imgs = getInput ()

3 S .parallelStream ()

= i .filter (not (this: :urlCached))
.map (this: :downloadImage)
.flatMap (this: :applyFilters)
.collect(toList()) ;

2 " \(J

23 Objects

N >

Asynchronous

Synchronous

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

2 ctive Prograyy, 0’/}29
9w
'..% 3 4 Y Reactive Streams
S © CompletableFuture (& Streams +
= . supplyAsync (reduce) CompletableFutures)
. thenApply
(BigFraction
: :toMixedString)
0 o .thenAccept
2 (System.out: :println) ; Completable
-(% g |\ J Futures

Synchronous Asynchronous

Comparing Reactive Programming with Other Paradigms

« Reactive programming is one of several Java programming paradigms

Multiple

Single

values

value

List<Image> imgs = getInput()
.stream/()
.map (checkUrlCachedAsync)
.map (downloadImageAsync)
.flatMap (applyFiltersAsync)
.collect (toFuture())

\

-ve Progra,
Ct,ve 1721y,
/29

e?
Reactive Streams

(& Streams +
CompletableFutures)

Completable
Futures

.thenApply (logResults)
.join() ;
—
Synchronous Asynchronous

Comparing Reactive Programming with Other Paradigms
Reactive programming is one of several Java programming paradigms

e Progra .
9 v.eactlve S e
-%3 < Reactive Streams
3 S| List<Image> imgs = Observable[~ (& Streams +
= .fromIterable (Options. CompletableFutures)
instance () .getUrlList())

.parallel (parallelism)

.runOn (scheduler)
% g .r::p(dovgllc{adAndStoreImage) Completable
s 6 -sequentia ()_ Futures
(7] .collect (toList())

! .blockingGet () ; ;

Asynchronous

Synchronous

10

Pros & Cons of Java
Reactive Streams Platforms

12

Pros & Cons of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles Responsive
to achieve several benefits

Message-
driven

13

Pros & Cons of Java Reactive Streams Platforms

« Java reactive streams implementations
apply reactive programming principles
to achieve several benefits
« Support concurrency with a

minimal number of threads
via a range of thread pools

Name

Schedulers.computation()

Schedulers.immed iate()

Schedulers.iof)

Schedulers.trampoline()

Schedulers.newThread()

Schedulers.test()

Schedulers.from(Executor e)

Description

Schedules computation bound work
(ScheduledExecutorSenice with pool size = NCPU, LRU
worker select strategy)

Schedules work on current thread

/O bound work (ScheduledExecutorService with growing
thread pool)

Queues work on the current thread
Creates new thread for every unit of work
Schedules work on scheduler supporting virtual time

Schedules work to be executed on provided executor

14

Pros & Cons of Java Reactive Streams Platforms

» Java reactive streams implementations (500ms backend service)
apply reactive programming principles #°®
to achieve several benefits 3200

3000

 Support concurrency with a 2500

minimal number of threads 2000
via a range of thread pools

1500
_ 1000 /
 Scale up performance with e
relatively few resources 0

500
1 10 100 200 500 1000 2000

Concurrent users

== Synchronous
~&-= Reactive

rriliseconds {35th percentile)

See dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Pros & Cons of Java Reactive Streams Platforms
 Java reactive streams implementations
apply reactive programming principles
to achieve several benefits

 Explicit synchronization and/or
threading is rarely needed when
applying these frameworks

Alleviates many accidental & inherent complexities of concurrency/parallelism

https://dzone.com/articles/spring-boot-20-webflux-reactive-performance-test

Pros & Cons of Java Reactive Streams Platforms

 Java reactive streams implementations Parallel Streams Completable Futures
apply reactive programming principles _ [EEEESS..G] T
to achieve several benefits e /\, ‘2:
» Support concurrency with a Ty -
minimal number of threads |M{(} L |§ ooty it)
via a range of thread pools B AN
.~ N R ereverereresd T o S
« EXxplicit synchronization and/or meteges: o)
threading is rarely needed when ©000-0-0-0-0+>

| observeOn(>) I

@0 00000~

map({ O--->01)

applying these frameworks

800 8ea00l-

Reactive
Streams

L I I e B I e

These benefits are not unique to reactive streams, however!!

Pros & Cons of Java Reactive Streams Platforms

« However, reactive programming s« .
isnt appropriate in all situations dimpimiy

4X
3X
2X

1X

(124
small startup

Total Ownership Cost

System Scale & Complexity

See www.youtube.com/watch?v=z0a0N90gaAA

http://www.youtube.com/watch?v=z0a0N9OgaAA

Pros & Cons of Java Reactive Streams Platforms

« However, reactive programming s« :
isnt appropriate in all situations B

4X
3X

2X

1X

Productivity

0X

small startup

Total Ownership Cost

Performance

System Scale & Complexity

It's essential to master the learning curve of reactive programming!

End of Evaluating Java
Programming Paradigms

20

