
Evaluating the Cons of the Java
Completable Futures Framework

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Evaluate the pros of using the Java completable futures framework
• Evaluate the cons of using the Java completable futures framework

3

• Evaluate the pros of using the Java completable futures framework
• Evaluate the cons of using the Java completable futures framework
• Again, we evaluate the Java completable futures framework compared

with the Java parallel streams framework

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

Completable Futures
…

map(this::downloadImageAsync)

thenAccept(this::logResults)

flatMap(this::applyFiltersAsync)

collect(toFuture())

map(this::checkUrlCachedAsync)

collect(toList())

Parallel Streams
…

filter(not(this::urlCached))

map(this::downloadImage)

flatMap(this::applyFilters)

Learning Objectives in this Part of the Lesson

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

4

Cons of the Java Completable
Futures Framework

5

void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls
.stream()
.map(this::checkUrlCachedAsync)
.map(this::downloadImageAsync)
.flatMap(this::applyFiltersAsync)
.collect(toFuture())
.thenApply(this::logResults)
.join(); ...

void processStream() {
List<URL> urls = getInput();

List<Image> images =
urls
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat) ...
.collect(toList());

logResults(images); ...

Cons of the Java Completable Futures Framework
• It’s easier to program Java parallel streams than completable futures

6

void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls
.stream()
.map(this::checkUrlCachedAsync)
.map(this::downloadImageAsync)
.flatMap(this::applyFiltersAsync)
.collect(toFuture())
.thenApply(this::logResults)
.join(); ...

Cons of the Java Completable Futures Framework
• It’s easier to program Java parallel streams than completable futures
• The overall control flow is similar when using the Java streams framework

void processStream() {
List<URL> urls = getInput();

List<Image> images =
urls
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat) ...
.collect(toList());

logResults(images); ...

7

void processStream() {
List<URL> urls = getInput();

List<Image> images =
urls
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat) ...
.collect(toList());

logResults(images); ...

void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls
.stream()
.map(this::checkUrlCachedAsync)
.map(this::downloadImageAsync)
.flatMap(this::applyFiltersAsync)
.collect(toFuture())
.thenApply(this::logResults)
.join(); ...

Cons of the Java Completable Futures Framework
• It’s easier to program Java parallel streams than completable futures
• The overall control flow is similar when using the Java streams framework
• However, async behaviors are more complicated than the sync behaviors!

8

void processStream() {
List<URL> urls = getInput();

List<Image> images =
urls
.parallelStream()
.filter(not(this::urlCached))
.map(this::blockingDownload)
.map(this::applyFilters)
.reduce(Stream::concat) ...
.collect(toList());

logResults(images); ...

Cons of the Java Completable Futures Framework
• It’s easier to program Java parallel streams than completable futures
• The overall control flow is similar when using the Java streams framework
• However, async behaviors are more complicated than the sync behaviors!

These behaviors use two-way synchr-
onous operations & quickly discard
cached images from consideration

9

void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls
.stream()
.map(this::checkUrlCachedAsync)
.map(this::downloadImageAsync)
.flatMap(this::applyFiltersAsync)
.collect(toFuture())
.thenApply(this::logResults)
.join(); ...

Cons of the Java Completable Futures Framework
• It’s easier to program Java parallel streams than completable futures
• The overall control flow is similar when using the Java streams framework
• However, async behaviors are more complicated than the sync behaviors!

These behaviors use complex asynchr-
onous operations & must propagate

Optional cached images thru the stream

10

Cons of the Java Completable Futures Framework

Performance Productivity

• There's a tradeoff between computing performance & programmer
productivity when choosing amongst these frameworks

Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL_STREAM executed in 428 msecs
SEQUENTIAL_STREAM executed in 981 msecs

Printing 4 results for input file 2 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES_1 executed in 83 msecs
PARALLEL_STREAM executed in 102 msecs
SEQUENTIAL_STREAM executed in 251 msecs

11

Printing 4 results for input file 1 from fastest to slowest
COMPLETABLE_FUTURES_1 executed in 312 msecs
COMPLETABLE_FUTURES_2 executed in 335 msecs
PARALLEL_STREAM executed in 428 msecs
SEQUENTIAL_STREAM executed in 981 msecs

Printing 4 results for input file 2 from fastest to slowest
COMPLETABLE_FUTURES_2 executed in 82 msecs
COMPLETABLE_FUTURES_1 executed in 83 msecs
PARALLEL_STREAM executed in 102 msecs
SEQUENTIAL_STREAM executed in 251 msecs

Cons of the Java Completable Futures Framework
• There's a tradeoff between computing performance & programmer

productivity when choosing amongst these frameworks, e.g.
• Completable futures are more efficient

& scalable, but are harder to program

Performance

Productivity

12

Cons of the Java Completable Futures Framework
• There's a tradeoff between computing performance & programmer

productivity when choosing amongst these frameworks, e.g.
• Completable futures are more efficient

& scalable, but are harder to program
• Asynchrony patterns aren’t generally

well understood by developers

See community.oracle.com/docs/DOC-995305

https://community.oracle.com/docs/DOC-995305

13

Performance

Productivity

Cons of the Java Completable Futures Framework
• There's a tradeoff between computing performance & programmer

productivity when choosing amongst these frameworks, e.g.
• Completable futures are more efficient

& scalable, but are harder to program
• Parallel streams are easier to program,

but are less efficient & scalable

14

Cons of the Java Completable Futures Framework
• There's a tradeoff between computing performance & programmer

productivity when choosing amongst these frameworks, e.g.
• Completable futures are more efficient

& scalable, but are harder to program
• Parallel streams are easier to program,

but are less efficient & scalable
• Use sequential streams for initial

development & then trivially make
them parallel!

List<List<SearchResults>>
processStream() {

return getInput()
.stream()
.map(this::processInput)
.collect(toList());

}

List<List<SearchResults>>
processStream() {

return getInput()
.parallelStream()
.map(this::processInput)
.collect(toList());

}

Converting sequential to parallel streams only require minuscule changes!

15

Cons of the Java Completable Futures Framework
• As usual, it is essential to know the best practices & patterns needed to

program completable futures effectively!

Performance Productivity

16

End of Evaluating the Cons
of the Java Completable

Futures Framework

