The Java CompletableFuture ImageStreamGang
Case Study: Applying Completahle Futures

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

* Know how to apply completable
futures to ImageStreamGang

NULLFILTER ~ GRAYSCALEFILTER

Process a list of URLs to images that
aren’t already cached & download/
transformy/store images asynchronously

Persistent

List of URLs to Download

HELINNE. .
List of Filters to Apply

LI —

Data Store

Applying Completable
Futures to ImageStreamGang

Applying Completable Futures to ImageStreamGang

» Focus on processStream() void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls

.stream()
.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)

.flatMap (this: :applyFiltersAsync)
.collect (toFuture())

.thenApply (stream ->
log(stream. flatMap
(Optional: :stream),

urls.size()))
.join() ;

See imagestreamgang/streams/ImageStreamCompletableFuturel.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/ImageStreamGang/AndroidGUI/app/src/main/java/livelessons/imagestreamgang/streams/ImageStreamCompletableFuture1.java

Applying Completable Futures to ImageStreamGang

» Focus on processStream() void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls
.stream()

.map (this: :checkUrlCachedAsync)

.map (this: :downloadImageAsync)
.flatMap (this: :applyFiltersAsync)

Combines a Java .collect (toFuture())

. . .thenApply (stream ->
sequential stream with Loq (stream. £latMa
completable futures 9 . P

(Optional: :stream),

urls.size()))
.join() ;

Applying Completable Futures to ImageStreamGang

 Focus on processStream() void processStream() ({

.. : : List<URL> urls = getInput() .,
 This implementation begins J put()
like parallel streams version

CompletableFuture<Stream<Image>>

Get the list of URLs resultsFuture = urls

input by the user -stream()
.map (this: :checkUrlCachedAsync)

.map (this: :downloadImageAsync)

.flatMap (this: :applyFiltersAsync)
.collect (toFuture())

.thenApply (stream ->
log(stream. flatMap
(Optional: :stream),
urls.size()))

.join() ;

Applying Completable Futures to ImageStreamGang

 Focus on processStream() void processStream() ({

.. i : List<URL> urls = getInput();
 This implementation begins J put()
like parallel streams version

CompletableFuture<Stream<Image>>
resultsFuture = urls
.stream()
.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)

Factory method creates .flatMap (this: :applyFiltersAsync)

3 stream of URLs .collect (toFuture())
.thenApply (stream ->

log(stream. flatMap
(Optional: :stream),
urls.size()))

.join() ;

Applying Completable Futures to ImageStreamGang

» Focus on processStream() void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls

.stream()
.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)

.flatMap (this: :applyFiltersAsync)
Asynchronously check if images .collect (toFuture())

have already been cached locally . thenApply (stream ->
log(stream. flatMap
(Optional: :stream),
urls.size()))

» However, it then becomes very
different from parallel streams

.join() ;

map() converts a stream of URLs to a stream of futures to optional URLS

Applying Completable Futures to ImageStreamGang

» Focus on processStream() void processStream() {
List<URL> urls = getInput();

_ CompletableFuture<Stream<Image>>
« However, it then becomes very resul tsFuture = urls

different from parallel streams .stream()
.map (this: :checkUrlCachedAsync)

’//’/’/;Tigi;his::downloadImageAsync)
/45}//75/7/' onously dO.Wn/OBd .flatMap (this: :applyFiltersAsync)
an image at each given URL .collect (toFuture ())

.thenApply (stream ->
log(stream. flatMap
(Optional: :stream),
urls.size()))

.join() ;

map() converts URL futures (completed) to image futures (downloading)

Applying Completable Futures to ImageStreamGang

» Focus on processStream()

void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>

» However, it then becomes very resultsFuture = urls
different from parallel streams .stream/()

.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)

Asynchronously filter &
store downloaded images
on the local file system

.flatMap (this: :applyFiltersAsync)

///////Téollect(toFuture())

.thenApply (stream ->

log(stream. flatMap

(Optional: :stream),
urls.size()))
.join() ;

flatMap() converts image futures (completed) to filtered image futures (xforming/storing)

Applying Completable Futures to ImageStreamGang

» Focus on processStream() void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls
.stream|()

.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)

.flatMap (this: :applyFiltersAsync)
.collect (toFuture())
Trigger all intermediate operations | — . thenApply (stream ->

& create a future used to wait for all log (stream. flatMap
async operations associated wy/the (Optional: :stream),
stream of futures to complete urls.size()))

» However, it then becomes very
different from parallel streams

.join() ;

See lesson on “Java CompletableFutures ImageStreamGang Example. StreamOfFuturesCollector”

Applying Completable Futures to ImageStreamGang

» Focus on processStream()

» However, it then becomes very

different from parallel streams

void

processStream() {

List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls

stream/()

.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)

.flatMap (this: :applyFiltersAsync)
.collect (toFuture())

This lambda logs the results
when all the futures in stream
complete their async processing

.thenApply (stream ->

—””””’,’,,,.log(stream.flatMap

(Optional: :stream),
urls.size()))

.join() ;

12

Applying Completable Futures to ImageStreamGang

» Focus on processStream() void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls

.stream()
.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)

.flatMap (this: :applyFiltersAsync)
.collect (toFuture())

.thenApply (stream ->
log(stream.flatMap

| ———— (Optional: :stream),

urls.size()))

» However, it then becomes very
different from parallel streams

This call removes all the
empty Optional objects

.join() ;

See blog.knoldus.com/java-9-enhance-your-java-8-code-with-java-9-optional-api-enhancement

https://blog.knoldus.com/java-9-enhance-your-java-8-code-with-java-9-optional-api-enhancement/

Applying Completable Futures to ImageStreamGang

» Focus on processStream() void processStream() {
List<URL> urls = getInput();

CompletableFuture<Stream<Image>>
resultsFuture = urls

.stream()

.map (this: :checkUrlCachedAsync)
.map (this: :downloadImageAsync)
.flatMap (this: :applyFiltersAsync)

» However, it then becomes very
different from parallel streams

Block until all images have been ' :ﬁ:rll:;; 1(;? z:z::: ()_)>
downloaded, processed, & stored log (stream. flatMap
(Optional: :stream),
urls.size()))
.join() ;

This join() is the one & only call in this implementation strategy!

End of the Java Completable
Future ImageStreamGang Case
Study: Applying Completable
Futures

15

