
Programming with Java
Structured Concurrency

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand how Java
structured concurrency
processes tasks in parallel

• Recognize how to program
Java structure concurrency
mechanisms

Learning Objectives in this Part of the Lesson
try (var scope = new StructuredTaskScope

.ShutdownOnFailure()) {
Future<String> user = scope
.fork(() -> findUser());

Future<Integer> order = scope
.fork(() -> fetchOrder());

scope.join();
scope.throwIfFailed();

return new Response
(user.resultNow(),
order.resultNow());

}

3

Programming with Java
Structured Concurrency

4

• Java structured concurrency
is evolving continuously

Programming with Java Structured Concurrency

See openjdk.org/jeps/428

https://openjdk.org/jeps/428

5

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService

Programming with Java Structured Concurrency

See docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html#newVirtualThreadPerTaskExecutor()

Added in Java 19

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

6

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• Used with the Java try-

with-resources feature

Programming with Java Structured Concurrency

See howtodoinjava.com/java/multi-threading/virtual-threads/#43-using-executorsnewvirtualthreadpertaskexecutor

try (var executor = Executors
.newVirtualThreadPerTaskExecutor()){

IntStream
.range(0, 10_000)
.forEach(i -> executor

.submit(() -> {
Thread.sleep(Duration

.ofSeconds(1));
return i;

}));
}

Creates an Executor that starts a
new virtual Thread for each task

https://howtodoinjava.com/java/multi-threading/virtual-threads/

7

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• Used with the Java try-

with-resources feature
• This Executor creates a

new virtual thread for each
request

Programming with Java Structured Concurrency

See howtodoinjava.com/java/multi-threading/virtual-threads/#43-using-executorsnewvirtualthreadpertaskexecutor

try (var executor = Executors
.newVirtualThreadPerTaskExecutor()){

IntStream
.range(0, 10_000)
.forEach(i -> executor

.submit(() -> {
Thread.sleep(Duration

.ofSeconds(1));
return i;

}));
}

All these submitted virtual threads must
complete by the end of the enclosing scope

https://howtodoinjava.com/java/multi-threading/virtual-threads/

8

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• Used with the Java try-

with-resources feature
• This Executor creates a

new virtual thread for each
request

• The try-with-resources
scope is a bit limiting..

Programming with Java Structured Concurrency
try (var executor = Executors

.newVirtualThreadPerTaskExecutor()){
IntStream
.range(0, 10_000)
.forEach(i -> executor

.submit(() -> {
Thread.sleep(Duration

.ofSeconds(1));
return i;

}));
}

9

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• StructuredTaskScope

Programming with Java Structured Concurrency

See download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Added in Java 19
in the “incubator”

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

10

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• StructuredTaskScope
• Also used with the try-

with-resources feature

Programming with Java Structured Concurrency

See howtodoinjava.com/java/multi-threading/structured-concurrency

try (var scope = new StructuredTaskScope
.ShutdownOnFailure()) {

Future<String> user = scope
.fork(() -> findUser());

Future<Integer> order = scope
.fork(() -> fetchOrder());

scope.join();
scope.throwIfFailed();

return new Response
(user.resultNow(),
order.resultNow());

}

https://howtodoinjava.com/java/multi-threading/structured-concurrency

11

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• StructuredTaskScope
• Also used with the try-

with-resources feature

Programming with Java Structured Concurrency

See download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html#fork

try (var scope = new StructuredTaskScope
.ShutdownOnFailure()) {

Future<String> user = scope
.fork(() -> findUser());

Future<Integer> order = scope
.fork(() -> fetchOrder());

scope.join();
scope.throwIfFailed();

return new Response
(user.resultNow(),
order.resultNow());

}

Creates a new virtual Thread
every time it is called

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

12

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• StructuredTaskScope
• Also used with the try-

with-resources feature
• However, it’s more

flexible due to the
join() method

Programming with Java Structured Concurrency

See download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html#join

try (var scope = new StructuredTaskScope
.ShutdownOnFailure()) {

Future<String> user = scope
.fork(() -> findUser());

Future<Integer> order = scope
.fork(() -> fetchOrder());

scope.join();
scope.throwIfFailed();

return new Response
(user.resultNow(),
order.resultNow());

}
Wait for all threads to finish or
the task scope to shut down

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

13

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• StructuredTaskScope
• Also used with the try-

with-resources feature
• However, it’s more

flexible due to the
join() method

Programming with Java Structured Concurrency

See download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html#throwIfFailed

try (var scope = new StructuredTaskScope
.ShutdownOnFailure()) {

Future<String> user = scope
.fork(() -> findUser());

Future<Integer> order = scope
.fork(() -> fetchOrder());

scope.join();
scope.throwIfFailed();

return new Response
(user.resultNow(),
order.resultNow());

}
Throws an Exception if a sub-
task completed abnormally

https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

14

• Java structured concurrency
is evolving continuously
• Executors/ExecutorService
• StructuredTaskScope
• Also used with the try-

with-resources feature
• However, it’s more

flexible due to the
join() method

Programming with Java Structured Concurrency

See download.java.net/java/early_access/loom/docs/api/java.base/java/util/concurrent/Future.html#resultNow

try (var scope = new StructuredTaskScope
.ShutdownOnFailure()) {

Future<String> user = scope
.fork(() -> findUser());

Future<Integer> order = scope
.fork(() -> fetchOrder());

scope.join();
scope.throwIfFailed();

return new Response
(user.resultNow(),
order.resultNow());

}
Return a result using
new Future methods

https://download.java.net/java/early_access/loom/docs/api/java.base/java/util/concurrent/Future.html

15

End of Programming with
Java Structured Concurrency

