Structured Goncurrency

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Recognize how to program
Java structure concurrency
mechanisms

try (var scope = new StructuredTaskScope
.ShutdownOnFailure()) {

Future<String> user = scope
.fork(() -> findUser())
Future<Integer> order = scope
.fork(() -> fetchOrder())

scope.join() ;
scope. throwIfFailed() ;

return new Response
(user.resultNow(),
order.resultNow()) ;




Programming with Java
Structured Concurrency




Programming with Java Structured Concurrency

 Java structured concurrency JEP 428: Structured Concurrency (Incubator)

is evolving continuously

Authors Alan Bateman, Ron Pressler
Owner Alan Bateman
Type Feature
Scope |DK
Status Closed/Delivered
Release 19
Component core-libs
Discussion loom dash dev at openjdk dot java dot net
Reviewed by Alex Buckley, Brian Goetz
Created 2021/11/15 15:01
Updated 2022/08/10 15:58
Issue 8277129

See openjdk.org/ijeps/428



https://openjdk.org/jeps/428

Programming with Java Structured Concurrency

« Java structured concurrency

is evolving continuously :
newVirtualThreadPerTaskExecutor is a preview API of the Java
« Executors/ExecutorService plattor,

Programs can only use newVirtualThreadPerTaskExecutor when
preview features are enabled.

Preview features may be removed in a future release, or upgraded to
permanent features of the Java platform.

public static ExecutorService newVirtualThreadPerTaskExecutor()

Creates an Executor that starts a new virtual Thread for each task. The
number of threads created by the Executor is unbounded.

This method is equivalent to invoking
newThreadPerTaskExecutor(ThreadFactory)®*ViEW with a thread factory
that creates virtual threads.

Add@d /n Java 19 Returns:

a new executor that creates a new virtual Thread for each task

Throws:
UnsupportedOperationException - if preview features are not enabled

Since:

19

See docs.orade.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html#newVirtualThreadPer TaskExecutor()



https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/concurrent/Executors.html

Programming with Java Structured Concurrency

« Java structured concurrency try (var executor = Executors
is evolving continuously .newVirtualThreadPerTaskExecutor () ) {

i IntStream
Executors_/ExecutorSerwce .range (0, 10_000)
« Used with the Java try- .forEach (i -> executor
with-resources feature .submit (() -> {

Thread.sleep (Duration
.0ofSeconds (1)) ;
return i;
1)
}

Creates an Executor that starts a
new virtual Thread for each task

See howtodoinjava.com/java/multi-threading/virtual-threads/ #43-using-executorsnewvirtualthreadpertaskexecutor



https://howtodoinjava.com/java/multi-threading/virtual-threads/

Programming with Java Structured Concurrency

 Java structured concurrency try (var executor = Executors
is evolving continuously .newVirtualThreadPerTaskExecutor () ) {

IntStream
.range (0, 10 000)
.forEach (1 -> executor
.submit (() -> {
Thread.sleep (Duration
.0ofSeconds (1)) ;

« Executors/ExecutorService

« This Executor creates a
new virtual thread for each return i
request 1)) ; '

All these submitted virtual threads must
complete by the end of the enclosing scope

See howtodoinjava.com/java/multi-threading/virtual-threads/ #43-using-executorsnewvirtualthreadpertaskexecutor



https://howtodoinjava.com/java/multi-threading/virtual-threads/

Programming with Java Structured Concurrency

 Java structured concurrency
is evolving continuously

« Executors/ExecutorService

» The try-with-resources
scope is a bit limiting..

try (var executor = Executors
.newVirtualThreadPerTaskExecutor()) {
IntStream

.range (0, 10 000)
.forEach (1 -> executor
.submit(() -> {
Thread.sleep (Duration
.0ofSeconds (1)) ;
return 1i;




Programming with Java Structured Concurrency

« Java structured concurrency
is evolving continuously

Class StructuredTaskScope<T>

java.lang.Object
jdk.incubator.concurrent.StructuredTaskScope<T>

Type Parameters:

° StI‘U CtU r e dTa SkS C Op e T - the result type of tasks executed in the scope

All Implemented Interfaces:
AutoCloseable

Direct Known Subclasses:

StructuredTaskScope.ShutdownOnFailure,

Added /'n .]al/a ]9 StructuredTaskScope.ShutdownOnSuccess
in the “incubator” public class StructuredTaskScope<T>

extends Object
implements AutoCloseable

A basic API for structured concurrency. StructuredTaskScope supports
cases where a task splits into several concurrent subtasks, to be executed in
their own threads, and where the subtasks must complete before the main
task continues. A StructuredTaskScope can be used to ensure that the
lifetime of a concurrent operation is confined by a syntax block, just like that
of a sequential operation in structured programming.

See download.java.net/java/early access/loom/docs/aDi/idk.incubator.concurrent/idk/incubator/concurrent/StruquredTaskScope.hlml!



https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java Structured Concurrency

 Java structured concurrency try (var scope = new StructuredTaskScope

is evolving continuously .ShutdownOnFailure()) {
Future<String> user = scope

.fork(() -> f£indUser())
» StructuredTaskScope Future<Integer> order = scope

« Also used with the try- -fork (() -> fetchOrder());
with-resources feature

scope.join() ;
scope. throwIfFailed() ;

return new Response
(user.resultNow (),
order.resultNow()) ;

See howtodoinjava.com/java/multi-threading/structured-concurrency



https://howtodoinjava.com/java/multi-threading/structured-concurrency

Programming with Java Structured Concurrency

 Java structured concurrency try (var scope = new StructuredTaskScope

is evolving continuously .ShutdownOnFailure()) {
Future<String> user = scope

.fork(() -> f£indUser())
» StructuredTaskScope Future<Integer> order = scope

» Also used with the try- .fork (() -> fetchOrder());
with-resources feature

scope.join() ;
scope. throwIfFailed() ;

Creates a new virtual Thread
every time it is called

return new Response
(user.resultNow (),
order.resultNow()) ;

See download.java.net/java/early aacess/loom/docs/api/idk.incubator.concurrent/jdk/incubator/concunrent/Strudured TaskScope.html #fork



https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.html

Programming with Java Structured Concurrency

 Java structured concurrency try (var scope = new StructuredTaskScope
is evolving continuously .ShutdownOnFailure()) {
Future<String> user = scope

.fork(() -> f£indUser())
» StructuredTaskScope Future<Integer> order = scope

» Also used with the try- -fork (() -> fetchOrder());
with-resources feature

« However, it's more
flexible due to the

scope.join() ;
scope. throwIfFailed() ;

join() method return new Response
(user.resultNow (),
Wait for all threads to finish or order.resultNow()) ;
the task scope to shut down }

See download.java.net/java/early access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/conaurrent/Strudured TaskSaope. ShutdownOnFailure.htmi#join



https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java Structured Concurrency

 Java structured concurrency try (var scope = new StructuredTaskScope

is evolving continuously .ShutdownOnFailure()) {
Future<String> user = scope

.fork(() -> f£indUser())
» StructuredTaskScope Future<Integer> order = scope
» Also used with the try- -fork (() -> fetchOrder());

with-resources feature

scope. join() ;

* Hovyever, it's more scope.throwIfFailed () ;
flexible due to the
join() method return new Response

(user.resultNow (),
order.resultNow()) ;

Throws an Exception if a sub-
task completed abnormally }

See download.java.net/java/early access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/Structured TaskScope. ShutdownOnFailure. html#throwlIfFailed



https://download.java.net/java/early_access/loom/docs/api/jdk.incubator.concurrent/jdk/incubator/concurrent/StructuredTaskScope.ShutdownOnFailure.html

Programming with Java Structured Concurrency

 Java structured concurrency try (var scope = new StructuredTaskScope

is evolving continuously .ShutdownOnFailure()) {
Future<String> user = scope

.fork(() -> f£indUser())
» StructuredTaskScope Future<Integer> order = scope

» Also used with the try- -fork (() -> fetchOrder());
with-resources feature

« However, it's more
flexible due to the

scope.join() ;
scope. throwIfFailed() ;

join() method return new Response
(user.resultNow (),
Return a result using order.resultNow()) ;

new Future methods }

See download.java.net/java/early access/loom/docs/api/java.base/java/util/concurrent/Future.html#resultNow



https://download.java.net/java/early_access/loom/docs/api/java.base/java/util/concurrent/Future.html

End of Programming with
Java Structured Concurrency

15



