Overview of Java Structured Concurrency

Douglas C. Schmidt
d.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

V

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson
» Understand the Java structured concurrency T, g ¢

model
» This model is designed to enable

the processing of "embarrassingly T g T g
parallel" tasks atop the virtual T2 g 3 !
threading mechanisms available

in Java 19 (& beyond)

Overview of Java
Structured Concurrency

Overview of Java Structured Concurrency

» Structured concurrency was added
recently to Java as a concurrent
programming paradigm

JEP 428: Structured Concurrency (Incubator)

Authors
Owner
Type

Scope
Status
Release
Component
Discussion
Reviewed by
Created
Updated
Issue

Summary

Alan Bateman, Ron Pressler
Alan Bateman

Feature

JDK

Closed /Delivered

19

core-libs

loom dash dev at openjdk dot java dot net
Alex Buckley, Brian Goetz
2021/11/15 15:01
2022/08/10 15:58

8277129

Simplify multithreaded programming by introducing an API for structured
concurrency. Structured concurrency treats multiple tasks running in different
threads as a single unit of work, thereby streamlining error handling and
cancellation, improving reliability, and enhancing observability. This is an

incubating API.

Goals

= Improve the maintainability, reliability, and observability of multithreaded

code.

= Promote a style of concurrent programming which can eliminate common
risks arising from cancellation and shutdown, such as thread leaks and
cancellation delays.

See openjdk.org/ijeps/428

https://openjdk.org/jeps/428

Overview of Java Structured Concurrency

 Structured concurrency was added Unstructured Structured
recently to Java as a concurrent \i'
programming paradigm

« It's intended to make programs

easier to read & understand, M 1“

quicker to write, & safer

R
o=

See en.wikipedia.org/wiki/Structured concurrency

https://en.wikipedia.org/wiki/Structured_concurrency

Overview of Java Structured Concurrency

 Structured concurrency was added Unstructured Structured
recently to Java as a concurrent \i'
programming paradigm

« It's intended to make programs

my By
easier to read & understand, M_ﬂ*

quicker to write, & safer

CR
« “Safer” avoids thread leaks \h/

& orphan threads \L

Thread T> may become an orphan
& leak relative to Thread T;

See en.wikipedia.org/wiki/Orphan process

https://en.wikipedia.org/wiki/Orphan_process

Overview of Java Structured Concurrency

 Structured concurrency was added Unstructured Structured
recently to Java as a concurrent \i'
programming paradigm

« It's intended to make programs | . m | \i'\
easier to read & understand, M_ﬂ* M M
quicker to write, & safer

« “Safer” avoids thread leaks \i, / \\t/

& orphan threads

The lifetime of Thread T; & Thread T,
are constrained to the enclosing scope

Overview of Java Structured Concurrency

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :
generateRandomBigFractions (count))
results.add (scope
.fork(() ->
reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope. join() ; \ We will walk through this

example quickly now & will
sortAndPrintList (results) ; explore it in detail later on

}

See github.com/douglascraigschmidt/LivelLessons/tree/master/Loom/ex3

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Loom/ex3

Overview of Java Structured Concurrency

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) ({
var results = new ArrayList<Future<BigFraction>>() \\\

for (var bigFraction -
generateRandomBigFractions (count)) Define a scope for

results.add (scope splitting a task into
.fork (() -> concurrent subtasks

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope. join() ;

sortAndPrintList (results) ;

Overview of Java Structured Concurrency

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :
generateRandomBigFractions (count))

Start new virtual threads to
reduce/multiply BigFraction

results.add (scop_e”//// objects concurrently
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope. join() ;

sortAndPrintList (results) ;

10

Overview of Java Structured Concurrency

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope.join() ; Wait for all threads to finish or
the task scope to shut down

sortAndPrintList (results) ;

11

Overview of Java Structured Concurrency

« Java structured concurrency makes the start & end of concurrent code explicit

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new Arraylist<Future<BigFraction>> ()

for (var bigFraction :
generateRandomBigFractions (count))

results.add (scope
.fork(() ->

reduceAndMultiply (bigFraction,
sBigReducedFraction)) ;

scope. join() ;

The close() method of "scope’is called

sortAndPrintlist(results); automatically when this block of code exits

12

Overview of Java Structured Concurrency

 Java structured concurrency provides
several guarantees

13

Overview of Java Structured Concurrency
 Java structured concurrency provides T, g ¢

several guarantees
« When a program’s flow of control

is split into multiple threads these - g T g
threads always complete at the T2 g 3 !

end of a flow
The flow of control splits into multiple K (/
threads at the beginning of the scope ¢

See theboreddev.com/understanding-structured-concurrency

https://theboreddev.com/understanding-structured-concurrency

Overview of Java

Structured Concurrency

several guarantees

 Java structured concurrency provides T, g ¢

« When a program’s flow of control
is split into multiple threads these
threads always complete at the

end of a flow

¥ ¥ N

\gf:2/

All these threads must complete
by the end of the enclosing scope

_— '

15

Overview of Java Structured Concurrency
 Java structured concurrency provides T, g ¢

several guarantees

* No “orphaned threads” occur in

an application T, g \Tm&)*ﬂ g

16

Overview of Java Structured Concurrency
 Java structured concurrency provides

if while function
several guarantees i
vy '
il
\s o/ ¥
J
Unstructured Structured
- This paradigm is designed to mimic , i\)
structured programmin | |
programming m = o=
y W
\!

See auroratide.com/posts/understanding-kotlin-coroutines

https://auroratide.com/posts/understanding-kotlin-coroutines

Overview of Java Structured Concurrency

« Java structured concurrency is intended for “embarrassingly paralle

"Embarrassingly parallel” tasks have
little/no dependency or need for
communication between tasks or
for sharing results between them

|II

programs

See en.wiki

pedia.org/wiki/Embarrassingly

parallel

http://en.wikipedia.org/wiki/Embarrassingly_parallel

Overview of Java Structured Concurrency
« Java structured concurrency is intended for “embarrassingly parallel” programs
* e.g., interacting with many micro-services in a cloud computing environment

See en.wikipedia.org/wiki/Microservices

https://en.wikipedia.org/wiki/Microservices

End of Overview of Java
Structured Concurrency

20

