
Overview of Java Structured Concurrency

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson

T2
T4T3

T1
• Understand the Java structured concurrency

model
• This model is designed to enable

the processing of "embarrassingly
parallel" tasks atop the virtual
threading mechanisms available
in Java 19 (& beyond)

3

Overview of Java
Structured Concurrency

4

• Structured concurrency was added
recently to Java as a concurrent
programming paradigm

Overview of Java Structured Concurrency

See openjdk.org/jeps/428

https://openjdk.org/jeps/428

5

• Structured concurrency was added
recently to Java as a concurrent
programming paradigm
• It’s intended to make programs

easier to read & understand,
quicker to write, & safer

Overview of Java Structured Concurrency

See en.wikipedia.org/wiki/Structured_concurrency

https://en.wikipedia.org/wiki/Structured_concurrency

6

• Structured concurrency was added
recently to Java as a concurrent
programming paradigm
• It’s intended to make programs

easier to read & understand,
quicker to write, & safer
• “Safer” avoids thread leaks

& orphan threads

Overview of Java Structured Concurrency

See en.wikipedia.org/wiki/Orphan_process

Thread T2 may become an orphan
& leak relative to Thread T1

https://en.wikipedia.org/wiki/Orphan_process

7

• Structured concurrency was added
recently to Java as a concurrent
programming paradigm
• It’s intended to make programs

easier to read & understand,
quicker to write, & safer
• “Safer” avoids thread leaks

& orphan threads

Overview of Java Structured Concurrency

The lifetime of Thread T1 & Thread T2
are constrained to the enclosing scope

8

• Java structured concurrency makes the start & end of concurrent code explicit
Overview of Java Structured Concurrency

See github.com/douglascraigschmidt/LiveLessons/tree/master/Loom/ex3

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new ArrayList<Future<BigFraction>>()

for (var bigFraction :
generateRandomBigFractions(count))

results.add(scope
.fork(() ->

reduceAndMultiply(bigFraction,
sBigReducedFraction));

scope.join();

sortAndPrintList(results);
}

We will walk through this
example quickly now & will
explore it in detail later on

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Loom/ex3

9

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new ArrayList<Future<BigFraction>>()

for (var bigFraction :
generateRandomBigFractions(count))

results.add(scope
.fork(() ->

reduceAndMultiply(bigFraction,
sBigReducedFraction));

scope.join();

sortAndPrintList(results);
}

Overview of Java Structured Concurrency

Define a scope for
splitting a task into
concurrent subtasks

• Java structured concurrency makes the start & end of concurrent code explicit

10

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new ArrayList<Future<BigFraction>>()

for (var bigFraction :
generateRandomBigFractions(count))

results.add(scope
.fork(() ->

reduceAndMultiply(bigFraction,
sBigReducedFraction));

scope.join();

sortAndPrintList(results);
}

Overview of Java Structured Concurrency

Start new virtual threads to
reduce/multiply BigFraction

objects concurrently

• Java structured concurrency makes the start & end of concurrent code explicit

11

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new ArrayList<Future<BigFraction>>()

for (var bigFraction :
generateRandomBigFractions(count))

results.add(scope
.fork(() ->

reduceAndMultiply(bigFraction,
sBigReducedFraction));

scope.join();

sortAndPrintList(results);
}

Overview of Java Structured Concurrency

Wait for all threads to finish or
the task scope to shut down

• Java structured concurrency makes the start & end of concurrent code explicit

12

try (var scope = new StructureTaskScope.ShutdownOnFailure()) {
var results = new ArrayList<Future<BigFraction>>()

for (var bigFraction :
generateRandomBigFractions(count))

results.add(scope
.fork(() ->

reduceAndMultiply(bigFraction,
sBigReducedFraction));

scope.join();

sortAndPrintList(results);
}

Overview of Java Structured Concurrency

The close() method of `scope’ is called
automatically when this block of code exits

• Java structured concurrency makes the start & end of concurrent code explicit

13

• Java structured concurrency provides
several guarantees

Overview of Java Structured Concurrency

14

• Java structured concurrency provides
several guarantees
• When a program’s flow of control

is split into multiple threads these
threads always complete at the
end of a flow

Overview of Java Structured Concurrency

T2
T4T3

The flow of control splits into multiple
threads at the beginning of the scope

See theboreddev.com/understanding-structured-concurrency

T1

https://theboreddev.com/understanding-structured-concurrency

15

T2 T4T3

All these threads must complete
by the end of the enclosing scope

• Java structured concurrency provides
several guarantees
• When a program’s flow of control

is split into multiple threads these
threads always complete at the
end of a flow

Overview of Java Structured Concurrency
T1

16

• Java structured concurrency provides
several guarantees
• When a program’s flow of control

is split into multiple threads these
threads always complete at the
end of a flow

• No “orphaned threads” occur in
an application

Overview of Java Structured Concurrency

T4T3

T1

T2

T5

17

• Java structured concurrency provides
several guarantees
• When a program’s flow of control

is split into multiple threads these
threads always complete at the
end of a flow

• No “orphaned threads” occur in
an application

• This paradigm is designed to mimic
structured programming

Overview of Java Structured Concurrency

See auroratide.com/posts/understanding-kotlin-coroutines

https://auroratide.com/posts/understanding-kotlin-coroutines

18

• Java structured concurrency is intended for “embarrassingly parallel” programs
Overview of Java Structured Concurrency

See en.wikipedia.org/wiki/Embarrassingly_parallel

“Embarrassingly parallel” tasks have
little/no dependency or need for
communication between tasks or
for sharing results between them

http://en.wikipedia.org/wiki/Embarrassingly_parallel

19

Overview of Java Structured Concurrency

Microservice-based App

Clients Flight

Airport

AA-airline

SWA-airline

…

ExchangeRate

• Java structured concurrency is intended for “embarrassingly parallel” programs
• e.g., interacting with many micro-services in a cloud computing environment

See en.wikipedia.org/wiki/Microservices

https://en.wikipedia.org/wiki/Microservices

20

End of Overview of Java
Structured Concurrency

