
Advanced Java CompletableFuture Features: 
Two Stage Completion Methods (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand how completion stage 

methods chain dependent actions 
• Know how to group these methods
• Single stage methods 
• Two stage methods (and)

Exception 
methods

Completion stage methods

Factory 
methodsArbitrary-arity 

methods

Basic methods



3

Learning Objectives in this Part of the Lesson
• Understand how completion stage 

methods chain dependent actions 
• Know how to group these methods
• Single stage methods 
• Two stage methods (and)

Exception 
methods

Completion stage methods

Factory 
methodsArbitrary-arity 

methods

Basic methods

See en.wikipedia.org/wiki/Logical_conjunction

https://en.wikipedia.org/wiki/Logical_conjunction


4

Methods Triggered by 
Completion of Both of 

Two Stages



5

• Methods triggered by completion 
of both of two previous stages
• thenCombine()

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<U> thenCombine
(CompletionStage<? Extends U>

other,
BiFunction<? super T,

? super U,
? extends V> fn)

{ ... }

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenCombine

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html


6

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<U> thenCombine
(CompletionStage<? Extends U>

other,
BiFunction<? super T,

? super U,
? extends V> fn)

{ ... }

See en.wikipedia.org/wiki/Logical_conjunction

https://en.wikipedia.org/wiki/Logical_conjunction


7

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Two futures are used here:

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<U> thenCombine
(CompletionStage<? Extends U>

other,
BiFunction<? super T,

? super U,
? extends V> fn)

{ ... }



8

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Two futures are used here:
• The future used to invoke thenCombine()
• Not shown since it’s not part of the method signature, but

is implied since thenCombine() is a non-static method

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<U> thenCombine
(CompletionStage<? Extends U>

other,
BiFunction<? super T,

? super U,
? extends V> fn)

{ ... }



9

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Two futures are used here:
• The future used to invoke thenCombine()
• The `other’ future passed to thenCombine()

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<U> thenCombine
(CompletionStage<? Extends U>

other,
BiFunction<? super T,

? super U,
? extends V> fn)

{ ... }



10

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Returns a future containing

the result of the action

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<U> thenCombine
(CompletionStage<? Extends U>

other,
BiFunction<? super T,

? super U,
? extends V> fn)

{ ... }



11

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Returns a future containing

the result of the action

Methods Triggered by Completion of Both of Two Stages

thenCombine() essentially performs a simple “reduction”

CompletableFuture<U> thenCombine
(CompletionStage<? Extends U>

other,
BiFunction<? super T,

? super U,
? extends V> fn)

{ ... }



12

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Returns a future containing

the result of the action
• Used to “join” two paths

of asynchronous execution

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<BF> compF1 = 

CompletableFuture
.supplyAsync(() ->

/* multiply two BFs. */);

CompletableFuture<BF> compF2 = 
CompletableFuture
.supplyAsync(() -> 

/* divide two BFs. */);

compF1
.thenCombine(compF2,

BigFraction::add)

.thenAccept(System.out::println);

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8


13

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Returns a future containing

the result of the action
• Used to “join” two paths

of asynchronous execution

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<BF> compF1 =

CompletableFuture
.supplyAsync(() ->

/* multiply two BFs. */);

CompletableFuture<BF> compF2 =
CompletableFuture
.supplyAsync(() -> 

/* divide two BFs. */);

compF1
.thenCombine(compF2,

BigFraction::add)

.thenAccept(System.out::println);
Asynchronously multiple 
& divide two big fractions



14

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Returns a future containing

the result of the action
• Used to “join” two paths

of asynchronous execution

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<BF> compF1 = 

CompletableFuture
.supplyAsync(() ->

/* multiply two BFs. */);

CompletableFuture<BF> compF2 = 
CompletableFuture
.supplyAsync(() -> 

/* divide two BFs. */);

compF1
.thenCombine(compF2,

BigFraction::add)

.thenAccept(System.out::println);

thenCombine()’s action is 
triggered only after its two 
associated futures complete 



15

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Returns a future containing

the result of the action
• Used to “join” two paths

of asynchronous execution

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<BF> compF1 = 

CompletableFuture
.supplyAsync(() ->

/* multiply two BFs. */);

CompletableFuture<BF> compF2 = 
CompletableFuture
.supplyAsync(() -> 

/* divide two BFs. */);

compF1
.thenCombineAsync(compF2,

aLongDurationBiFunction)

.thenAccept(System.out::println);

thenCombineAsync() can 
be used if a long-duration 

BiFunction is applied

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenCombineAsync

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html


16

• Methods triggered by completion 
of both of two previous stages
• thenCombine()
• Applies a BiFunction action to 

two previous stages’ results
• Returns a future containing

the result of the action
• Used to “join” two paths

of asynchronous execution

Methods Triggered by Completion of Both of Two Stages
CompletableFuture<BF> compF1 = 

CompletableFuture
.supplyAsync(() ->

/* multiply two BFs. */);

CompletableFuture<BF> compF2 = 
CompletableFuture
.supplyAsync(() -> 

/* divide two BFs. */);

compF1
.thenCombine(compF2,

BigFraction::add)

.thenAccept(System.out::println);
Print out the results



17

End of Advanced Java 
CompletableFuture Features: 

Two Stage Completion
Methods (Part 1)


