
Advanced Java CompletableFuture Features:
Introducing Completion Stage Methods (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand advanced features

of completable futures, e.g.
• Factory methods initiate async

computations
• Completion stage methods chain

together dependent actions

Exception
methods

Completion stage methods

Factory
methodsArbitrary-arity

methods

Basic methods

3

Learning Objectives in this Part of the Lesson
• Understand advanced features

of completable futures, e.g.
• Factory methods initiate async

computations
• Completion stage methods chain

together dependent actions
• Perform async result processing

& composition
Exception
methods

Completion stage methods

Factory
methodsArbitrary-arity

methods

Basic methods

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

4

Overview of
Completion Stages

5See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

• A completable future can
serve as a ”completion stage”
for async result processing

Overview of Completion Stages

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

6See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

• A completable future can
serve as a ”completion stage”
for async result processing
• Performs an action or

computes a value when
another CompletionStage
completes

Overview of Completion Stages

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

7

• A completable future can
serve as a ”completion stage”
for async result processing
• Performs an action or

computes a value when
another CompletionStage
completes

• Juggling is a good analogy
for completion stages!

Overview of Completion Stages

See en.wikipedia.org/wiki/Juggling

https://en.wikipedia.org/wiki/Juggling

8

• A completable future can
serve as a ”completion stage”
for async result processing
• Performs an action or

computes a value when
another CompletionStage
completes

• Juggling is a good analogy
for completion stages!

• Resources are only consumed
when an action runs, which
reduces system overhead

Overview of Completion Stages

See en.wikipedia.org/wiki/Start-stop_system

https://en.wikipedia.org/wiki/Start-stop_system

9

Chaining Actions Together
via Completion Stage Methods

10

• Completable futures can
be chained together via
completion stage methods

Chaining Actions Together via Completion Stage Methods

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionStage.html

11

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
...

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

12

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
...

Create an unreduced
big fraction variable

See math.answers.com/questions/What_is_an_unreduced_fraction

https://math.answers.com/questions/What_is_an_unreduced_fraction

13

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
...

Create a supplier lambda variable
that will reduce the big fraction

See docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

14

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
...

This factory method will
asynchronously reduce the
big fraction supplier lambda

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#supplyAsync

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

15

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
...

thenApply()’s action is
triggered when future from
supplyAsync() completes

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#supplyAsync

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

16

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

• Methods can be chained
together “fluently”

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
.thenAccept(System.out::println);

See en.wikipedia.org/wiki/Fluent_interface

https://en.wikipedia.org/wiki/Fluent_interface

17

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

• Methods can be chained
together “fluently”

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
.thenAccept(System.out::println);

thenAccept()’s action is
triggered when future from

thenApply() completes

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#thenAccept

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

18

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

• Methods can be chained
together “fluently”
• Each method registers

an action to apply

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
.thenAccept(System.out::println);

19

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

• Methods can be chained
together “fluently”
• Each method registers

an action to apply
• A lambda action is called

only after previous stage
completes successfully

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
.thenAccept(System.out::println);

This is what is meant by “chaining” via the Fluent Interface pattern

20

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

• Methods can be chained
together “fluently”
• Each method registers

an action to apply
• A lambda action is called

only after previous stage
completes successfully

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
.thenAccept(System.out::println);

Action is “deferred” until previous stage completes & a fork-join thread is available

21

• Completable futures can
be chained together via
completion stage methods
• A dependent action handles

the result after a previous
async call completes

• Methods can be chained
together “fluently”

• Fluent chaining enables
async programming to look
like sync programming

Chaining Actions Together via Completion Stage Methods
BigFraction unreduced = BigFraction
.valueOf(new BigInteger

("846122553600669882"),
new BigInteger

("188027234133482196"),
false); // Don’t reduce!

Supplier<BigFraction> reduce = () ->
BigFraction.reduce(unreduced);

CompletableFuture
.supplyAsync(reduce)
.thenApply(BigFraction

::toMixedString)
.thenAccept(System.out::println);

22

End of Advanced Java
CompletableFuture Features:

Introducing Completion
Stage Methods (Part 1)

