
Advanced Java CompletableFuture
Features: Factory Method Internals

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand advanced features

of completable futures, e.g.
• Factory methods initiate 

async computations
• Applying factory methods
• Internals of factory methods
• i.e., how supplyAsync() runs 

a supplier lambda param
asynchronously &
concurrently

Exception 
methods

CompletionStage methods

Factory 
methodsArbitrary-arity 

methods

Basic methods



3

Mapping supplyAsync() to 
the Common Fork-Join Pool



4See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
.supplyAsync(() -> {

BigFraction bf1 = 
new BigFraction(f1);

BigFraction bf2 = 
new BigFraction(f2);

return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

• supplyAsync() arranges to run the supplier lambda param concurrently & 
asynchronously in a thread residing in the Java common fork-join pool

Mapping supplyAsync() to the Common Fork-Join Pool

http://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex8


5

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
.supplyAsync(() -> {

BigFraction bf1 = 
new BigFraction(f1);

BigFraction bf2 = 
new BigFraction(f2);

return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

• supplyAsync() arranges to run the supplier lambda param concurrently & 
asynchronously in a thread residing in the Java common fork-join pool

Mapping supplyAsync() to the Common Fork-Join Pool

supplyAsync() does not 
create a new thread!

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#supplyAsync

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html


6

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
.supplyAsync(() -> {

BigFraction bf1 = 
new BigFraction(f1);

BigFraction bf2 = 
new BigFraction(f2);

return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

Instead, it return a future that’s 
completed by a worker thread 

running in common fork-join pool

Mapping supplyAsync() to the Common Fork-Join Pool
• supplyAsync() arranges to run the supplier lambda param concurrently & 

asynchronously in a thread residing in the Java common fork-join pool

See dzone.com/articles/be-aware-of-forkjoinpoolcommonpool

https://dzone.com/articles/be-aware-of-forkjoinpoolcommonpool


7

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
.supplyAsync(() -> {

BigFraction bf1 =
new BigFraction(f1);

BigFraction bf2 =
new BigFraction(f2);

return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

• supplyAsync() arranges to run the supplier lambda param concurrently & 
asynchronously in a thread residing in the Java common fork-join pool

supplyAsync()’s param is a supplier lambda 
that multiplies two BigFraction objects

Mapping supplyAsync() to the Common Fork-Join Pool



8

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
.supplyAsync(() -> {

BigFraction bf1 = 
new BigFraction(f1);

BigFraction bf2 = 
new BigFraction(f2);

return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

Although Supplier.get() takes no 
params, effectively final values can 
be passed to this supplier lambda

See javarevisited.blogspot.com/2015/03/what-is-effectively-final-variable-of.html

Mapping supplyAsync() to the Common Fork-Join Pool
• supplyAsync() arranges to run the supplier lambda param concurrently & 

asynchronously in a thread residing in the Java common fork-join pool

http://javarevisited.blogspot.com/2015/03/what-is-effectively-final-variable-of.html


9See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#supplyAsync

String f1("62675744/15668936"); String f2("609136/913704");

CompletableFuture<BigFraction> future = CompletableFuture
.supplyAsync(() -> {

BigFraction bf1 =
new BigFraction(f1);

BigFraction bf2 =
new BigFraction(f2);

return bf1.multiply(bf2);});

System.out.println(future.join().toMixedString());

The worker thread calls the Supplier.
get() method to obtain this supplier 
lambda & perform the computation

Internals of CompletableFuture Factory Methods
• supplyAsync() arranges to run the supplier lambda param concurrently & 

asynchronously in a thread residing in the Java common fork-join pool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html


10

Internals of Completable
Future Factory Methods



11

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
...
CompletableFuture<U> f = 
new CompletableFuture<U>();

execAsync(ForkJoinPool.commonPool(), 
new AsyncSupply<U>(supplier, f));

return f;
}
...

See classes/java/util/concurrent/CompletableFuture.java

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

Here’s how supplyAsync() code 
uses the supplier passed to it

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/CompletableFuture.java


12

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
...
CompletableFuture<U> f = 
new CompletableFuture<U>();

execAsync(ForkJoinPool.commonPool(), 
new AsyncSupply<U>(supplier, f));

return f;
}
...

() -> { ... return 
bf1.multiply(bf2);

}

The supplier parameter is bound to the lambda passed to supplyAsync() 

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool



13

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
...
CompletableFuture<U> f = 
new CompletableFuture<U>();

execAsync(ForkJoinPool.commonPool(), 
new AsyncSupply<U>(supplier, f));

return f;
}
...

An “incomplete” 
future is created here

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html#CompletableFuture

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html


14

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
...
CompletableFuture<U> f = 
new CompletableFuture<U>();

execAsync(ForkJoinPool.commonPool(), 
new AsyncSupply<U>(supplier, f));

return f;
}
...

The supplier & incomplete future are 
encapsulated in an AsyncSupply message

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool



15

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
...
CompletableFuture<U> f = 
new CompletableFuture<U>();

execAsync(ForkJoinPool.commonPool(), 
new AsyncSupply<U>(supplier, f));

return f;
}
...

This message is enqueued for async 
execution in common fork-join pool.

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool

This design is one example of “message passing” a la Reactive programming!



16

<U> CompletableFuture<U> supplyAsync(Supplier<U> supplier) {
...
CompletableFuture<U> f = 
new CompletableFuture<U>();

execAsync(ForkJoinPool.commonPool(), 
new AsyncSupply<U>(supplier, f));

return f;
}
...

The incomplete future is returned to 
the caller for subsequent use (e.g., 
with completion stage methods)

Internals of Completable Future Factory Methods
• supplyAsync() is implemented by leveraging a message-passing framework

that feeds tasks to the Java common fork-join pool



17

static final class AsyncSupply<U> extends Async {
final Supplier<U> fn;
final CompletableFuture<U> dst;

AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst) 
{ this.fn = fn; this.dst = dst; }

public final boolean exec() {
...
U u = fn.get();
...
d.internalComplete(u, ex);
...

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a 

thread residing in the Java common fork-join pool

See classes/java/util/concurrent/CompletableFuture.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/CompletableFuture.java


18

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a 

thread residing in the Java common fork-join pool

See classes/java/util/concurrent/CompletableFuture.java

static final class AsyncSupply<U> extends Async {
final Supplier<U> fn;
final CompletableFuture<U> dst;

AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst) 
{ this.fn = fn; this.dst = dst; }

public final boolean exec() {
...
U u = fn.get();
...
d.internalComplete(u, ex);
...

Async extends ForkJoinTask & 
Runnable so it can be executed

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/CompletableFuture.java


19AsyncSupply stores the original supplier lambda passed into supplyAsync()

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a 

thread residing in the Java common fork-join pool
static final class AsyncSupply<U> extends Async {
final Supplier<U> fn;
final CompletableFuture<U> dst;

AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst) 
{ this.fn = fn; this.dst = dst; }

public final boolean exec() {
...
U u = fn.get();
...
d.internalComplete(u, ex);
...

() -> { ... return 
bf1.multiply(bf2); }



20A worker thread then runs the supplier lambda asynchronously & stores the result

() -> { ... return 
bf1.multiply(bf2);

}

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a 

thread residing in the Java common fork-join pool
static final class AsyncSupply<U> extends Async {
final Supplier<U> fn;
final CompletableFuture<U> dst;

AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst) 
{ this.fn = fn; this.dst = dst; }

public final boolean exec() {
...
U u = fn.get();
...
d.internalComplete(u, ex);
...



21See earlier lesson on “The Java Fork-Join Pool: the ManagedBlocker Interface”

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a 

thread residing in the Java common fork-join pool
static final class AsyncSupply<U> extends Async {
final Supplier<U> fn;
final CompletableFuture<U> dst;

AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst) 
{ this.fn = fn; this.dst = dst; }

public final boolean exec() {
...
U u = fn.get();
...
d.internalComplete(u, ex);
...

get() can use the ForkJoinPool Managed 
Blocker mechanism to auto-scale the 

common pool size for blocking operations 



22

Internals of Completable Future Factory Methods
• AsyncSupply is a nested class that executes the supplier lambda param in a 

thread residing in the Java common fork-join pool
static final class AsyncSupply<U> extends Async {
final Supplier<U> fn;
final CompletableFuture<U> dst;

AsyncSupply(Supplier<U> fn, CompletableFuture<T> dst) 
{ this.fn = fn; this.dst = dst; }

public final boolean exec() {
...
U u = fn.get();
...
d.internalComplete(u, ex);
...

Triggers completion of the future using
the encoding of the given arguments



23

End of Advanced Java 
CompletableFuture Features: 

Factory Method Internals


