
Understanding the
Pros & Cons of Synchrony

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt
Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Motivate the need for Java Future

& CompletableFuture mechanisms
by understanding the pros & cons
of synchrony

3

Overview of Synchrony
& Synchronous Operations

4

• Method calls in typical Java programs
are largely synchronous

Overview of Synchrony & Synchronous Operations
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

e.g., calls on Java collections & behaviors in Java stream aggregate operations

5

• Method calls in typical Java programs
are largely synchronous
• i.e., a callee borrows the thread of its caller

until its computation(s) finish

Overview of Synchrony & Synchronous Operations
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

6

• Method calls in typical Java programs
are largely synchronous
• i.e., a callee borrows the thread of its caller

until its computation(s) finish & a result
is returned

Overview of Synchrony & Synchronous Operations
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

Note “request/response”
nature of these calls

See en.wikipedia.org/wiki/Request-response

https://en.wikipedia.org/wiki/Request%E2%80%93response

7

The Pros of Synchrony

8

• Pros of synchronous calls
The Pros of Synchrony

9

• Pros of synchronous calls
• “Intuitive” to program & debug

The Pros of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

10

• Pros of synchronous calls
• “Intuitive” to program & debug, e.g.
• Maps onto common two-way method patterns

The Pros of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See www.iro.umontreal.ca/~keller/Layla/remote.pdf

http://www.iro.umontreal.ca/~keller/Layla/remote.pdf

11

• Pros of synchronous calls
• “Intuitive” to program & debug, e.g.
• Maps onto common two-way method patterns
• Local caller state retained when callee returns

The Pros of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See wiki.c2.com/?ActivationRecord

http://wiki.c2.com/?ActivationRecord

12

• Pros of synchronous calls
• “Intuitive” to program & debug, e.g.
• Maps onto common two-way method patterns
• Local caller state retained when callee returns

The Pros of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See Java8/ex20/src/main/java/utils/FileAndNetUtils.java

byte[] downloadContent(URL url) {
byte[] buf = new byte[BUFSIZ];
ByteArrayOutputStream os =
new ByteArrayOutputStream();

try(InputStream is = url
.openStream()) {

for (int bytes;
(bytes = is.read(buf)) > 0;)

os.write(buf, 0, bytes); ...

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Java8/ex20/src/main/java/utils/FileAndNetUtils.java

13

The Cons of Synchrony

14

• Cons of synchronous calls
The Cons of Synchrony

15

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems

The Cons of Synchrony
CALLER CALLEE

searchForWord1

searchForWord2

searchForWord3

return result1

return result2

return return3

See mincong.io/2020/06/26/completable-future

https://mincong.io/2020/06/26/completable-future/

16

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• e.g., synchronization,

context switching, data
movement, & memory
management costs

The Cons of Synchrony

17

The Cons of Synchrony

Efficient
Resource
Utilization

Efficient
Performance

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• Selecting right # of threads is hard
List<Image> filteredImages = urls
.parallelStream()
.filter(not(this::urlCached))
.map(this::downloadImage)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

Image downloadImage(URL url){
return new Image

(url,
downloadContent

(url));
}

See github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

https://github.com/douglascraigschmidt/LiveLessons/tree/master/ImageStreamGang

18

The Cons of Synchrony
• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• Selecting right # of threads is hard

Efficient
Resource
Utilization

Efficient
Performance

List<Image> filteredImages = urls
.parallelStream()
.filter(not(this::urlCached))
.map(this::downloadImage)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

A large # of threads may help to improve
performance, but can also waste resources

19

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• Selecting right # of threads is hard

The Cons of Synchrony

List<Image> filteredImages = urls
.parallelStream()
.filter(not(this::urlCached))
.map(this::downloadImage)
.map(this::applyFilters)
.reduce(Stream::concat)
.orElse(Stream.empty())
.collect(toList());

A small # of threads may conserve
resources at the cost of performance

Efficient
Resource
Utilization

Efficient
Performance

20

The Cons of Synchrony
• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• Blocking threads incur overhead
• Selecting right # of threads is hard

Particularly tricky for I/O-
bound programs that need

more threads to run efficiently

Efficient
Resource
Utilization

Efficient
Performance

21

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• May need to change the size of

the common fork-join pool

The Cons of Synchrony

See lesson on “The Java Fork-Join Pool: Maximizing Core Utilization w/the Common Fork-Join Pool”

22

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• May need to change the size of

the common fork-join pool, e.g.
• Set a system property

The Cons of Synchrony
String desiredThreads = "10";
System.setProperty
("java.util.concurrent." +
"ForkJoinPool.common." +
"parallelism",
desiredThreads);

It’s hard to estimate the total # of threads to set in the common fork-join pool

23

• Cons of synchronous calls
• May not leverage all parallelism

available in multi-core systems
• May need to change the size of

the common fork-join pool, e.g.
• Set a system property
• Or use the ManagedBlocker

to increase common pool size
automatically/temporarily

The Cons of Synchrony

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

ManageBlockers can only be used
with the common fork-join pool..

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.ManagedBlocker.html

24

End of Understanding the
Pros & Cons of Synchrony

