
Overview of Java Streams Phases
Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand Java streams structure &

functionality, e.g.
• Fundamentals of streams
• Three streams phases

Stream source

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Input x

Output f(x)

Output g(f(x))

Split

Apply

Combine

3

Overview of Stream Phases

4

• Streams usually have three phases
Overview of Stream Phases

See www.jstatsoft.org/article/view/v040i01/v40i01.pdf

http://www.jstatsoft.org/article/view/v040i01/v40i01.pdf

5

• Streams usually have three phases, i.e.
• Split − start with a source of data

e.g., a Java array, collection, generator function, or input channel

Stream
.of("horatio",

"laertes",
"Hamlet", ...)

...

…
Overview of Stream Phases

6

• Streams usually have three phases, i.e.
• Split − start with a source of data

e.g., a Java array, collection, generator function, or input channel

List<String> characters =
List.of("horatio",

"laertes",
"Hamlet", ...);

characters
.stream()
...

…
Overview of Stream Phases

7

• Streams usually have three phases, i.e.
• Split − start with a source of data
• Apply − process data through a

pipeline of intermediate operations Intermediate operation (behavior f)

Intermediate operation (behavior g)

Examples of intermediate operations include filter(), map(), & sorted()

Input x

Output f(x)

Output g(f(x))

Stream
.of("horatio", "laertes",

"Hamlet", ...)
.filter(s -> toLowerCase

(s.charAt(0)) == 'h')
.map(this::capitalize)
.sorted()
...

…

Each operation maps an input
stream to an output stream.

Overview of Stream Phases

8

• Streams usually have three phases, i.e.
• Split − start with a source of data
• Apply − process data through a

pipeline of intermediate operations
• Processing often involves transforming

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Input x

Output f(x)

Output g(f(x))

Stream
.of("horatio", "laertes",

"Hamlet", ...)
.filter(s -> toLowerCase

(s.charAt(0)) == 'h')
.map(this::capitalize)
.sorted()
...

…

Each operation maps an input
stream to an output stream.

Overview of Stream Phases

9

• Streams usually have three phases, i.e.
• Split − start with a source of data
• Apply − process data through a

pipeline of intermediate operations
• Processing often involves transforming

Intermediate operation (behavior f)

Intermediate operation (behavior g)

See hajsoftutorial.com/java-stateless-stateful-operations

Input x

Output f(x)

Output g(f(x))

Stream
.of("horatio", "laertes",

"Hamlet", ...)
.filter(s -> toLowerCase

(s.charAt(0)) == 'h')
.map(this::capitalize)
.sorted()
...

…

Some operation
transformations
are “stateless”

Overview of Stream Phases

https://hajsoftutorial.com/java-stateless-stateful-operations

10

• Streams usually have three phases, i.e.
• Split − start with a source of data
• Apply − process data through a

pipeline of intermediate operations
• Processing often involves transforming

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Input x

Output f(x)

Output g(f(x))

Stream
.of("horatio", "laertes",

"Hamlet", ...)
.filter(s -> toLowerCase

(s.charAt(0)) == 'h')
.map(this::capitalize)
.sorted()
...

…
Overview of Stream Phases

Other operation
transformations
are “stateful”

See hajsoftutorial.com/java-stateless-stateful-operations

https://hajsoftutorial.com/java-stateless-stateful-operations

11

• Streams usually have three phases, i.e.
• Split − start with a source of data
• Apply − process data through a

pipeline of intermediate operations
• Combine − finish with a terminal

operation that yields a non-stream
result

Terminal operation (behavior h)

Output f(x)

Output g(f(x))

…

Input x

...

.filter(s -> toLowerCase
(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach(System.out::println);

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Overview of Stream Phases

See jenkov.com/tutorials/java-functional-programming/streams.html#terminal-operations

https://jenkov.com/tutorials/java-functional-programming/streams.html

12

Output f(x)

Output g(f(x))

…

Input x

A terminal operation triggers processing of intermediate operations in a stream

• Streams usually have three phases, i.e.
• Split − start with a source of data
• Apply − process data through a

pipeline of intermediate operations
• Combine − finish with a terminal

operation that yields a non-stream
result
...
.filter(s -> toLowerCase

(s.charAt(0)) == 'h')
.map(this::capitalize)
.sorted()
.forEach(System.out::println);

Terminal operation (behavior h)

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Overview of Stream Phases

13A stream only runs if it has one (& only one) terminal operation

• Streams usually have three phases, i.e.
• Split − start with a source of data
• Apply − process data through a

pipeline of intermediate operations
• Combine − finish with a terminal

operation that yields a non-stream
result

Overview of Stream Phases

14

End of Overview of
Java Streams Phases

