
Overview of Java Concurrency Hazards

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

Learning Objectives in this Part of the Lesson
• Understand the meaning of key 

concurrent programming concepts
• Recognize how Java supports 

concurrent programming concepts
• Be aware of common concurrency

hazards faced by Java programmers



3

Learning Objectives in this Part of the Lesson
• Understand the meaning of key 

concurrent programming concepts
• Recognize how Java supports 

concurrent programming concepts
• Be aware of common concurrency

hazards faced by Java programmers
• Including hazards stemming from

synchronizers themselves!



4

Common Concurrent 
Programming Hazards



5

• Java shared objects & message passing 
mechanisms help share resources safely 
& avoid concurrency hazards, e.g.
• Race conditions
• Memory inconsistencies

Common Concurrent Programming Hazards & Solutions

See en.wikipedia.org/wiki/Thread_safety

https://en.wikipedia.org/wiki/Thread_safety


6See en.wikipedia.org/wiki/Race_condition#Software

• Race conditions
• Occur when a program depends on

the sequence or timing of threads
to operate properly

Common Concurrent Programming Hazards & Solutions

write()

read()

https://en.wikipedia.org/wiki/Race_condition


7

Common Concurrent Programming Hazards & Solutions

See github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue

This program induces race 
conditions between producer & 
consumer threads accessing an 
unsynchronized bounded queue

write()

read()

• Race conditions
• Occur when a program depends on

the sequence or timing of threads
to operate properly
class BuggyQueue<E> {
List<E> l = new ArrayList<>(); 
public void offer(E e) { 
if (!isFull()) 
{ l.add(e); return true; }
else return false;

}
public E poll() { 
return !isEmpty() ? l.remove(0) : null;

} ...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/BuggyQueue


8

class BuggyQueue<E> {
List<E> l = new ArrayList<>(); 
public void offer(E e) { 
if (!isFull()) 
{ l.add(e); return true; }
else return false;

}
public E poll() { 
return !isEmpty() ? l.remove(0) : null;

} ...

Common Concurrent Programming Hazards & Solutions

See henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html

Chaos & insanity 
may result if offer() 
& poll() are called 

concurrently!

write()

read()

• Race conditions
• Occur when a program depends on

the sequence or timing of threads
to operate properly

http://henrikeichenhardt.blogspot.com/2013/06/why-shared-mutable-state-is-root-of-all.html


9

class BuggyQueue<E> {
List<E> l = new ArrayList<>(); 
public synchronized void offer(E e) { 
if (!isFull()) 
{ l.add(e); return true; }
else return false;

}
public synchronized E poll() { 
return !isEmpty() ? l.remove(0) : null;

} ...

Common Concurrent Programming Hazards & Solutions

e.g., synchronized statement/method, ReentrantLock, StampedLock, etc.

write()

read()

• Race conditions
• Occur when a program depends on

the sequence or timing of threads
to operate properly

Avoid via Java 
mutual exclusion 

mechanisms



10

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have 

inconsistent views of what should 
be the same data

See jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html

http://jeremymanson.blogspot.com/2007/08/atomicity-visibility-and-ordering.html


11

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have 

inconsistent views of what should 
be the same data

class LoopMayNeverEnd { 
boolean mDone; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
mDone = true;
// Thread T1 write

} 
...



12

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have 

inconsistent views of what should 
be the same data

class LoopMayNeverEnd { 
boolean mDone; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
mDone = true;
// Thread T1 write

} 
...

Unsynchronized & mutable 
shared data (boolean fields are 
initialized to false by default)

See howtodoinjava.com/java/keywords/java-boolean

https://howtodoinjava.com/java/keywords/java-boolean


13

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have 

inconsistent views of what should 
be the same data

class LoopMayNeverEnd { 
boolean mDone; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
mDone = true;
// Thread T1 write

} 
...

T2 may never stop, even 
after T1 sets mDone to true



14

Common Concurrent Programming Hazards & Solutions
• Memory inconsistencies
• Occur when different threads have 

inconsistent views of what should 
be the same data

class LoopMayNeverEnd { 
volatile boolean mDone; 

void work() {
// Thread T2 read
while (!mDone) { 
// do work 

} 
} 

void stopWork() { 
mDone = true;
// Thread T1 write

} 
...

Avoid via Java mechanisms 
that ensure atomic operations

e.g., volatile, AtomicBoolean, AtomicInteger, AtomicLock, etc.



15

How Synchronizers 
Cause Concurrent 

Programming Hazards



16

• Ironically, synchronizers can also 
enable concurrency hazards, e.g.
• Deadlock

How Synchronizers Cause Concurrent Programming Hazards



17

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads 

are waiting for the other(s) to finish, 
& thus none ever do

T2T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

L1

L2

See en.wikipedia.org/wiki/Deadlock

http://en.wikipedia.org/wiki/Deadlock


18See www.computerworld.com/article/2585107/the-deadly-embrace.html

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads 

are waiting for the other(s) to finish, 
& thus none ever do

T2T1

<<owns>>

<<owns>> <<needs>>

<<needs>>

L1

L2

T2 & T1 will be stuck 
in a “deadly embrace”

http://www.computerworld.com/article/2585107/the-deadly-embrace.html


19

public void method1() { 
synchronized (String.class) { 
synchronized (Integer.class) { ... } 

} 
} 
public void method2() { 
synchronized (Integer.class) {
synchronized (String.class) { ... } 

} 
}

See stackoverflow.com/a/14555496

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads 

are waiting for the other(s) to finish, 
& thus none ever do

Deadlock will likely occur 
if method1() & method2() 
are called from thread T1
& thread T2 concurrently

https://stackoverflow.com/a/14555496


20

public void method1() { 
synchronized (Integer.class) { 
synchronized (String.class) { ... } 

} 
} 
public void method2() { 
synchronized (Integer.class) {
synchronized (String.class) { ... } 

} 
}

See docs.oracle.com/cd/E19455-01/806-5257/6je9h0347/index.html

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads 

are waiting for the other(s) to finish, 
& thus none ever do

Deadlock can be avoided 
by always acquiring locks 

in the same order!

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h0347/index.html


21

void transfer(SimpleQueue<String> src,
SimpleQueue<String> dest)... {

synchronized(src) {
synchronized(dest) {
while(!src.isEmpty()) 
dest.put(src.take());

}
}

}

See github.com/douglascraigschmidt/LiveLessons/tree/master/DeadlockQueue

An Overview of Concurrent Programming Hazards
• Deadlock
• Occurs when 2+ competing threads 

are waiting for the other(s) to finish, 
& thus none ever do

This program shows how deadlock 
may occur when transfer() is called 

concurrently from thread T1 & thread 
T2 with the src & dest params swapped

https://github.com/douglascraigschmidt/LiveLessons/tree/master/DeadlockQueue


22

End of Overview Java 
Concurrency Hazards


