are Developed in Java (Part 1)

Douglas C. Schmidt
id.schmidt@vanderbilt.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize how Java supports =5 g =
concurrent programming concepts

» Recognize how Java supports
concurrent programming concepts, e.g.

« Thread objects

<<Java Class>>

® Thread

&yield():void

& currentThread() Thread
& sleep(long):void
@’sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start():void

@ run():void

@ exit():void

@ interrupt():void
&interrupted():boolean
@ isInterrupted():boolean
isAlive()-boolean

& setPriority(int)-void

& getPriority()int

& join(long):void

& join(long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon():boolean

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Learning Objectives in this Part of the Lesson

» Recognize how Java supports
concurrent programming concepts, e.g.

« Thread objects

P B =

Java threads are under-
going major changes as
part of Project Loom

<<Java Class>>

® Thread

&yield()-void

& currentThread() Thread
& sleep(long):void
@’sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start():void

@ run():void

@ exit():void

@ interrupt():void
&interrupted():boolean
@ isInterrupted():boolean
& isAlive():boolean

& setPriority(int)-void

& getPriority()int

& join(long):void

& join(long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon():boolean

See wiki.openijdk.java.net/display/loom/Main

https://wiki.openjdk.java.net/display/loom/Main

An Overview of
Java Threads

An Overview of Java Threads

« A Java Thread is an object

Class Thread

java.lang.Object
java.lang.Thread

All Implemented Interfaces:

Runnable

Direct Known Subclasses:
ForkJoinWorkerThread

public class Thread
extends Object
implements Runnable

A thread is a thread of execution in a program. The Java Virtual Machine allows an
application to have multiple threads of execution running concurrently.

Every thread has a priority. Threads with higher priority are executed in preference to

threads with lower priority. Each thread may or may not also be marked as a daemon.
When code running in some thread creates a new Thread object, the new thread has its
priority initially set equal to the priority of the creating thread, and is a daemon thread
if and only if the creating thread is a daemon.

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

An Overview of Java Threads

* A Java Thread is an object, e.g.

« It contains methods &
(internal) fields

public class Thread
implements Runnable ({

private volatile char namel];

private int priority;

private boolean daemon = false;

private Runnable target;
ThreadLocal.ThreadLocalMap

threadlLocals = null;
private long stackSize;
private long tid;

<<Java Class>>

® Thread

& yield():-void

& currentThread() Thread
oSsIeep(Ic‘J(ng):void

@ Thread(Runngble)

@ start():void

@ run():void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
@ join():void

& setDaemon(boolean):void
& isDaemon()-boolean

See blog.jamesdbloom.com/JVMInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

An Overview of Java Threads

* A Java Thread is an object, e.g.
» It contains methods & Thread

(internal) fields Program Counter

Stack Native Stack

} LY

\ /
\ /

Historically each Java Thread had its own unigque
/d, name, priority, runtime stack, thread-local
storage, instruction pointer, & other registers, etc.

See blog.jamesdbloom.com/JVMInternals.html

http://blog.jamesdbloom.com/JVMInternals.html

An Overview of Java Threads
« A Java Thread is an object, e.q. [riatform threads

Thread supports the creation of platform threads that are typically mapped 1:1 to kernel threads

L It Conta i ns methOd S & scheduled by the operating system. Platform threads will usually have a large stack and other resources

that are maintained by the operating system. Platforms threads are suitable for executing all types of

(i ntern a I) field S tasks but may be a limited resource.

Platform threads are designated daemon or non-daemon threads. When the Java virtual machine starts
up, there is usually one non-daemon thread (the thread that typically calls the application's main
method). The Java virtual machine terminates when all started non-daemon threads have terminated.
Unstarted daemon threads do not prevent the Java virtual machine from terminating. The Java virtual
machine can also be terminated by invoking the Runtime.exit(int) method, in which case it will
terminate even if there are non-daemon threads still running.

In addition to the daemon status, platform threads have a thread priority and are members of a thread
group.

Platform threads get an automatically generated thread name by default.

Virtual threads

Thread also supports the creation of virtual threads. Virtual threads are typically user-mode threads

ﬁ‘adit iona/ Ja Va Thr ead Objec tS ar e scheduled by the Java virtual machine rather than the operating system. Virtual threads will typically

require few resources and a single Java virtual machine may support millions of virtual threads. Virtual

n 0 W C a // e d I;D /a tfo rm th reads’// threads are suitable for executing tasks that spend most of the time blocked, often waiting for I/O

operations to complete. Virtual threads are not intended for long running CPU intensive operations.

VAT V/4
W h er eaS n eW V/ ,1- u a / thr ea dS a r e Virtual threads typically employ a small set of platform threads are use as carrier threads. Locking and
I/O operations are the scheduling points where a carrier thread is re-scheduled from one virtual thread

nw/; H V/4 H
// gh t W e/ gh t Concur r ency Ob]eC tS to another. Code executing in a virtual thread will usually not be aware of the underlying carrier thread,

and in particular, the currentThread() method, to obtain a reference to the current thread, will return
the Thread object for the virtual thread, not the underlying carrier thread.

See download.java.net/java/early access/loom/docs/api/java.base/java/lang/Thread.html

https://download.java.net/java/early_access/loom/docs/api/java.base/java/lang/Thread.html

An Overview of Java Threads

* A Java Thread is an object, e.g.

e It can also be in one of
various “states”

States of traditional
Java (platform) threads

new MyThread()

myThread.start()

wait-time
elapsed

Timed
Waiting

resource
obtained,

Runnable

Blocked

attempt to access
guarded resource

cond.notify(),

cond.notifyAll()

run() cond.wait()

@

Terminated)

run() method
returns

myThread.sleep()
wait(timeout)
join(timeout)

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html

An Overview of Java Threads

* A Java Thread is an object, e.g.

e It can also be in one of
various “states”

States of modern
Java virtual threads

afterTer

start—>> NEW
<t 0 © 2020 Heinz Max Kabutz - All Rights Reserved
\ afterYield()
—
il e oanned() i parkPermit==true
PARKED
runCC’nt'n“i"WleeldO afterYleId() / A
minate() unpark L
RUNNING <—runCont|nuat|on0— RUNNABLE <— / \
afterTethlnate() Wait for afterYield() '/ \
signalAll() \
> TERMINATED |if !parkPermit A il < Cals l'anark() \

. . /]
l parkCarrierThread() f Calls park(5 il
/ e / I

@ i PINNED LockSupport

Calls park() |
sun.nio.ch _,'
NioSocketimpl SelChimpl KQueue)

ConsoleStreams DatagramChannellmpl

See www.youtube.com/watch?v=5brCaY31y1M

http://www.youtube.com/watch?v=5brCaY31y1M

End of Overview of How
Concurrent Programs are
Developed in Java (Part 1)

12

