
Overview of Concurrent 
Programming Concepts

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science
Institute for Software 
Integrated Systems

Vanderbilt University 
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

recv()send()

write()

read()

Learning Objectives in this Part of the Lesson
• Understand the meaning of key concepts 

associated with concurrent programming
• e.g., where two or more threads can 

run simultaneously & interact via
shared objects & message passing

UI thread

background threads

Concurrent programming helps address ‘cons’ of sequential programming



3

An Overview of 
Concurrent Programming



4

An Overview of Concurrent Programming

See en.wikipedia.org/wiki/Concurrency_(computer_science)

• Concurrent programming is a form of computing where two or more 
threads can run simultaneously

https://en.wikipedia.org/wiki/Concurrency_(computer_science)


5

An Overview of Concurrent Programming
• Concurrent programming is a form of computing where two or more 

threads can run simultaneously

See docs.oracle.com/javase/tutorial/essential/concurrency/threads.html

A thread is a unit of execution for a stream 
of instructions that can run concurrently on 
one or more processor cores over its lifetime

Processor cores

https://docs.oracle.com/javase/tutorial/essential/concurrency/threads.html


6

An Overview of Concurrent Programming
• Concurrent programming is a form of computing where two or more 

threads can run simultaneously

See en.wikipedia.org/wiki/Process_(computing)

A thread typically runs in a process, which 
allocates & manages resources (e.g., files, 

memory, & network connections) & prevents 
corruption from threads in other processes

Processor cores

https://en.wikipedia.org/wiki/Process_(computing)


7

An Overview of Concurrent Programming
• Concurrent programming is a form of computing where two or more 

threads can run simultaneously
for (int i = 0; i < 5; i++)
new Thread(() -> 

someComputation()).
start();

This code snippet creates/starts 5 Java 
Thread objects that run someComputation

concurrently across 4 processor cores

Processor cores



8

An Overview of Concurrent Programming
• Concurrent programming is a form of computing where two or more 

threads can run simultaneously
for (int i = 0; i < 5; i++)
new Thread(() -> 

someComputation()).
start();

A Java Thread object needn’t run on 
the same core throughout its lifetime, 

but instead it can be “multiplexed” 
across multiple cores via “time-slicing”

Processor cores

See scalibq.wordpress.com/2012/06/01/multi-core-and-multi-threading

https://scalibq.wordpress.com/2012/06/01/multi-core-and-multi-threading


9

An Overview of Concurrent Programming
• Concurrent programming is a form of computing where two or more 

threads can run simultaneously

See en.wikipedia.org/wiki/Single-core

for (int i = 0; i < 5; i++)
new Thread(() -> 

someComputation()).
start();

Multiple threads can also be multi-
plexed over a single-core processor

https://en.wikipedia.org/wiki/Single-core


10

An Overview of Concurrent Programming
• Concurrent programming is a form of computing where two or more 

threads can run simultaneously

See www.quora.com/Are-single-core-CPUs-still-produced

for (int i = 0; i < 5; i++)
new Thread(() -> 

someComputation()).
start();

However, single-core processors 
are becoming rare for general-
purpose computing devices..

http://www.quora.com/Are-single-core-CPUs-still-produced


11

An Overview of Concurrent Programming
• Threads can interact via shared objects (synchronizers) & message 

passing

See upcoming lesson on “Overview of How Concurrent Programs are Developed in Java”

recv()send()

write()

read()



12

An Overview of Concurrent Programming
• Threads can interact via shared objects (synchronizers) & message 

passing

See upcoming lesson on “Overview of How Concurrent Programs are Developed in Java”

Shared objects (synchronizers) can be used 
to ensure mutual exclusion between—& 
coordination amongst—multiple threads

write()

read()

recv()send()



13

An Overview of Concurrent Programming
• Threads can interact via shared objects (synchronizers) & message 

passing

See upcoming lesson on “Overview of How Concurrent Programs are Developed in Java”

Multiple threads can pass messages via 
queues that are properly synchronized

recv()send()

write()

read()



14

• Unlike sequential programming, different executions of a concurrent 
program may produce different orderings of instructions:

An Overview of Concurrent Programming

See earlier lesson on “Overview of Sequential Programming Concepts”



15

• Unlike sequential programming, different executions of a concurrent 
program may produce different orderings of instructions:
• The textual order of the source code

doesn’t define the order of execution

An Overview of Concurrent Programming

new Thread(() -> 
computationA()).
start();

new Thread(() -> 
computationB()).
start();

new Thread(() -> 
computationC()).
start();

computationA(), computationB(), 
& computationC() can run in any 
order after their threads start up

See en.wikipedia.org/wiki/Indeterminacy_in_concurrent_computation

https://en.wikipedia.org/wiki/Indeterminacy_in_concurrent_computation


16

• Unlike sequential programming, different executions of a concurrent 
program may produce different orderings of instructions:
• The textual order of the source code

doesn’t define the order of execution
• Operations are permitted to overlap 

in time across multiple cores

An Overview of Concurrent Programming

Multiple computations can execute 
concurrently (during overlapping time 
periods) instead of sequentially (with 

one completing before the next starts)

See en.wikipedia.org/wiki/Concurrent_computing

https://en.wikipedia.org/wiki/Concurrent_computing


17

• Concurrent programming can offload work from the user interface 
(UI) thread to background thread(s)

An Overview of Concurrent Programming

See developer.android.com/topic/performance/threads.html

UI 
thread

background 
threads

https://developer.android.com/topic/performance/threads.html


18

• Concurrent programming can offload work from the user interface 
(UI) thread to background thread(s), e.g.
• Background thread(s) can block

An Overview of Concurrent Programming

See developer.android.com/training/multiple-threads/communicate-ui.html

UI 
thread

background 
threads

https://developer.android.com/training/multiple-threads/communicate-ui.html


19

• Concurrent programming can offload work from the user interface 
(UI) thread to background thread(s), e.g.
• Background thread(s) can block
• The UI thread does not block

An Overview of Concurrent Programming

See developer.android.com/training/multiple-threads/communicate-ui.html

UI 
thread

background 
threads

https://developer.android.com/training/multiple-threads/communicate-ui.html


20

• Concurrent programming can offload work from the user interface 
(UI) thread to background thread(s), e.g.
• Background thread(s) can block
• The UI thread does not block
• Any mutable state shared between

these threads must be protected
to avoid concurrency hazards

An Overview of Concurrent Programming

See upcoming lesson on “Overview of Concurrency in Java”

write()

read()

recv()send()

e.g., a ”race condition” can occur when a 
program depends upon the sequence or 

timing of threads for it to operate properly



21

• Concurrent programming can offload work from the user interface 
(UI) thread to background thread(s), e.g.
• Background thread(s) can block
• The UI thread does not block
• Any mutable state shared between

these threads must be protected
to avoid concurrency hazards
• Motivates the need for various types of 

Java synchronizers

An Overview of Concurrent Programming

See docs.oracle.com/javase/tutorial/essential/concurrency/sync.html

write()

read()

recv()send()

https://docs.oracle.com/javase/tutorial/essential/concurrency/sync.html


22

• Concurrent programming can offload work from the user interface 
(UI) thread to background thread(s), e.g.
• Background thread(s) can block
• The UI thread does not block
• Any mutable state shared between

these threads must be protected
to avoid concurrency hazards

• Message passing mechanisms can be
used to avoid sharing state across
multiple threads 

An Overview of Concurrent Programming

See upcoming lesson on “Overview of Concurrent Programming in Java”

recv()send()

write()

read()



23

End of Overview of 
Concurrent Programming 

Concepts


