
Java Parallel Streams Internals:

Combining Results (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals, e.g.

• Know what can change & what can’t

• Partition a data source into “chunks”

• Process chunks in parallel via the
common fork-join pool

• Configure the Java parallel
stream common fork-join pool

• Perform a reduction to combine
partial results into a single result

Learning Objectives in this Part of the Lesson

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

3

Combining Results
in a Parallel Stream

4

• After the common fork-join pool finishes
processing chunks their partial results
are combined into a final result

Combining Results in a Parallel Stream

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

Partial
results

Final result

This discussion assumes a non-concurrent collector (other discussions follow)

5

• After the common fork-join pool finishes
processing chunks their partial results
are combined into a final result

• join() occurs in a single
thread at each level

• i.e., the “parent”

Combining Results in a Parallel Stream

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

“Parent”

“Children”

6

• After the common fork-join pool finishes
processing chunks their partial results
are combined into a final result

• join() occurs in a single
thread at each level

• i.e., the “parent”

Combining Results in a Parallel Stream

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

DataSource1.1 DataSource1.2 DataSource2.1 DataSource2.2

DataSource1 DataSource2

DataSource

As a result, there’s typically no need for synchronizers during the joining

“Parent”

“Children”

7

• Different terminal operations combine
partial results in different ways

Understanding these differences is particularly important for parallel streams

Combining Results in a Parallel Stream

8

• Different terminal operations combine
partial results in different ways, e.g.

• reduce() creates a new
immutable value

See docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

Combining Results in a Parallel Stream

https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

9

• Different terminal operations combine
partial results in different ways, e.g.

• reduce() creates a new
immutable value

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

longs 1..2 longs 3..4 longs 5..6 longs 7..8

longs 1..4 longs 5..8

Range of longs from 1..8

long factorial(long n) {

return LongStream

.rangeClosed(1, n)

.parallel()

.reduce(1, (a, b) -> a * b,

(a, b) -> a * b);

}

Combining Results in a Parallel Stream

Generate a range of longs
from 1..8 in parallel

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

10

• Different terminal operations combine
partial results in different ways, e.g.

• reduce() creates a new
immutable value

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

longs 1..2 longs 3..4 longs 5..6 longs 7..8

longs 1..4 longs 5..8

Range of longs from 1..8

long factorial(long n) {

return LongStream

.rangeClosed(1, n)

.parallel()

.reduce(1, (a, b) -> a * b);

}

2 12 30 56

Combining Results in a Parallel Stream

Multiply pair-wise values

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex16

11

long factorial(long n) {

return LongStream

.rangeClosed(1, n)

.parallel()

.reduce(1, (a, b) -> a * b);

}

• Different terminal operations combine
partial results in different ways, e.g.

• reduce() creates a new
immutable value

reduce() combines two immutable values (e.g., long) & produces a new one

reduce()

reduce()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

longs 1..2 longs 3..4 longs 5..6 longs 7..8

longs 1..4 longs 5..8

Range of longs from 1..8

2 12 30 56

24

40,320

reduce() 1,680

Combining Results in a Parallel Stream

Multiply pair-wise values

12See greenteapress.com/thinkapjava/html/thinkjava011.html

• Different terminal operations combine
partial results in different ways, e.g.

• reduce() creates a new
immutable value

• collect() mutates an
existing value

Combining Results in a Parallel Stream

http://greenteapress.com/thinkapjava/html/thinkjava011.html

13

Set<CharSequence>

uniqueWords =

getInput(sSHAKESPEARE),

"\\s+")

.parallelStream()

...

.collect(toCollection(TreeSet::new));

• Different terminal operations combine
partial results in different ways, e.g.

• reduce() creates a new
immutable value

• collect() mutates an
existing value

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

1st quarter of words 2nd quarter of words 3rd quarter of words 4th quarter of words

1st half of words 2nd half of words

All words in Shakespeare’s works

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

Combining Results in a Parallel Stream

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex14

14

Set<CharSequence>

uniqueWords =

getInput(sSHAKESPEARE),

"\\s+")

.parallelStream()

...

.collect(toCollection(TreeSet::new));

• Different terminal operations combine
partial results in different ways, e.g.

• reduce() creates a new
immutable value

• collect() mutates an
existing value

collect() collect()

collect()

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

collect() mutates a container to accumulate the result it’s producing

1st quarter of words 2nd quarter of words 3rd quarter of words 4th quarter of words

1st half of words 2nd half of words

All words in Shakespeare’s works

Combining Results in a Parallel Stream

15

Set<CharSequence>

uniqueWords =

getInput(sSHAKESPEARE),

"\\s+")

.parallelStream()

...

.collect(ConcurrentHashSetCollector.toSet());

• Different terminal operations combine
partial results in different ways, e.g.

• reduce() creates a new
immutable value

• collect() mutates an
existing value

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

Concurrent collectors (covered later) are different than non-concurrent collectors

accumulate() accumulate()

accumulate()

Concurrent
Result Container

1st quarter of words 2nd quarter of words 3rd quarter of words 4th quarter of words

1st half of words 2nd half of words

All words in Shakespeare’s works

Combining Results in a Parallel Stream

16

End of Java Parallel Streams
Internals: Combining Results

(Part 1)

