
Java Parallel Streams Internals: 

Mapping Onto the Common Fork-Join Pool

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand parallel stream internals, e.g.

• Know what can change & what can’t

• Partition a data source into “chunks”

• Process chunks in parallel via the
common fork-join pool

• Recognize how parallel streams
are mapped onto the common
fork-join pool framework

Learning Objectives in this Part of the Lesson

See gee.cs.oswego.edu/dl/papers/fj.pdf

http://gee.cs.oswego.edu/dl/papers/fj.pdf


3

Mapping Parallel Streams 
Onto the Java Fork-Join Pool



4

• Each worker thread in the common fork-join pool runs a loop scanning
for tasks to run

Mapping Parallel Streams Onto the Common Fork-Join Pool



5

• Each worker thread in the common fork-join pool runs a loop scanning
for tasks to run

In this lesson, we just care about tasks associated with parallel streams

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

Mapping Parallel Streams Onto the Common Fork-Join Pool



6

• Each worker thread in the common fork-join pool runs a loop scanning
for tasks to run

• Goal is to keep worker threads 
& cores as busy as possible!

Mapping Parallel Streams Onto the Common Fork-Join Pool



7

• Each worker thread in the common fork-join pool runs a loop scanning
for tasks to run

• Goal is to keep worker threads 
& cores as busy as possible!

• A worker thread has a “double-
ended queue” (aka “deque”) that 
serves as its main source of tasks

See en.wikipedia.org/wiki/Double-ended_queue

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Double-ended_queue


8

• The parallel streams framework automatically creates fork-join tasks that are
run by worker threads in the common fork-join pool 

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

Mapping Parallel Streams Onto the Common Fork-Join Pool



9

• The AbstractTask super class is used by most fork-join tasks to implement the 
parallel streams framework

abstract class AbstractTask ... { ...

public void compute() {

Spliterator<P_IN> rs = spliterator, ls; 

boolean forkRight = false; ... 

while(... (ls = rs.trySplit()) != null){

K taskToFork;

if (forkRight) 

{ forkRight = false; ... taskToFork = ...makeChild(rs); } 

else 

{ forkRight = true; ... taskToFork = ...makeChild(ls); }

taskToFork.fork();

}

} ...

See openjdk/8-b132/java/util/stream/AbstractTask.java

Manages splitting logic, tracking of 
child tasks, & intermediate results

Mapping Parallel Streams Onto the Common Fork-Join Pool

http://www.grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/stream/AbstractTask.java


10

• The AbstractTask super class is used by most fork-join tasks to implement the 
parallel streams framework

abstract class AbstractTask ... { ...

public void compute() {

Spliterator<P_IN> rs = spliterator, ls; 

boolean forkRight = false; ... 

while(... (ls = rs.trySplit()) != null){

K taskToFork;

if (forkRight) 

{ forkRight = false; ... taskToFork = ...makeChild(rs); } 

else 

{ forkRight = true; ... taskToFork = ...makeChild(ls); }

taskToFork.fork();

}

} ...

Decides whether to split a task 
further and/or compute it directly

Mapping Parallel Streams Onto the Common Fork-Join Pool



11See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit

• The AbstractTask super class is used by most fork-join tasks to implement the 
parallel streams framework

abstract class AbstractTask ... { ...

public void compute() {

Spliterator<P_IN> rs = spliterator, ls; 

boolean forkRight = false; ... 

while(... (ls = rs.trySplit()) != null){

K taskToFork;

if (forkRight) 

{ forkRight = false; ... taskToFork = ...makeChild(rs); } 

else 

{ forkRight = true; ... taskToFork = ...makeChild(ls); }

taskToFork.fork();

}

} ...

Keep partitioning input source 
until trySplit() returns null

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#trySplit--


12

• The AbstractTask super class is used by most fork-join tasks to implement the 
parallel streams framework

abstract class AbstractTask ... { ...

public void compute() {

Spliterator<P_IN> rs = spliterator, ls; 

boolean forkRight = false; ... 

while(... (ls = rs.trySplit()) != null){

K taskToFork;

if (forkRight) 

{ forkRight = false; ... taskToFork = ...makeChild(rs); } 

else 

{ forkRight = true; ... taskToFork = ...makeChild(ls); }

taskToFork.fork();

}

} ...

Alternate which child is forked 
to avoid biased spliterators

Mapping Parallel Streams Onto the Common Fork-Join Pool



13

• The AbstractTask super class is used by most fork-join tasks to implement the 
parallel streams framework

abstract class AbstractTask ... { ...

public void compute() {

Spliterator<P_IN> rs = spliterator, ls; 

boolean forkRight = false; ... 

while(... (ls = rs.trySplit()) != null){

K taskToFork;

if (forkRight) 

{ forkRight = false; ... taskToFork = ...makeChild(rs); } 

else 

{ forkRight = true; ... taskToFork = ...makeChild(ls); }

taskToFork.fork();

}

} ...

Fork a new sub-task & continue 
processing the other in the loop

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#fork

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html#fork--


14

• The AbstractTask super class is used by most fork-join tasks to implement the 
parallel streams framework

abstract class AbstractTask ... { ...

public void compute() {

Spliterator<P_IN> rs = spliterator, ls; 

boolean forkRight = false; ... 

while(... (ls = rs.trySplit()) != null){

...

}

task.setLocalResult(task.doLeaf());

} ...

After trySplit() returns null this method typically calls forEachRemaining(),
which then processes all elements sequentially by calling tryAdvance()

See docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#forEachRemaining

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/Spliterator.html#forEachRemaining-java.util.function.Consumer-


15

• After the AbstractTask.compute() 
method calls fork() on a task this
task is pushed onto the head of 
its worker thread’s deque

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

See gee.cs.oswego.edu/dl/papers/fj.pdf

2.push()

1.fork()

Mapping Parallel Streams Onto the Common Fork-Join Pool

http://gee.cs.oswego.edu/dl/papers/fj.pdf


16

• Each worker thread processes 
its deque in LIFO order 

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

2.pop()

1.join()

See en.wikipedia.org/wiki/Stack_(abstract_data_type)

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)


17

• Each worker thread processes 
its deque in LIFO order 

• A task pop’d from the head of 
a deque is run to completion

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

2.pop()

1.join()

See en.wikipedia.org/wiki/Run_to_completion_scheduling

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Run_to_completion_scheduling


18

• Each worker thread processes 
its deque in LIFO order 

• A task pop’d from the head of 
a deque is run to completion

• LIFO order improves locality of 
reference & cache performance

Sub-Task1.1

Sub-Task1.2

Sub-Task1.3 Sub-Task3.3

Sub-Task3.4

Sub-Task2.4

WorkQueue WorkQueue WorkQueue

Sub-Task1.4

See en.wikipedia.org/wiki/Locality_of_reference

2.pop()

1...

Mapping Parallel Streams Onto the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Locality_of_reference


19

• To maximize core utilization, idle 
worker threads “steal” work from 
the tail of busy threads’ deques

See upcoming lessons on “The Java Fork-Join Framework”

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task1.1

Sub-Task3.3

Sub-Task3.4

WorkQueue WorkQueue WorkQueue

poll()

Mapping Parallel Streams Onto the Common Fork-Join Pool



20

End of Java Parallel Stream 
Internals: Mapping Onto the 

Common Fork-Join Pool 


