
Java Parallel Streams Internals: Parallel

Processing w/the Common Fork-Join Pool

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand parallel stream internals, e.g.

• Know what can change & what can’t

• Partition a data source into “chunks”

• Process chunks in parallel via the
common fork-join pool

Learning Objectives in this Part of the Lesson

join join

join

Process
sequentially

Process
sequentially

Process
sequentially

Process
sequentially

InputString1.1 InputString1.2 InputString2.1 InputString2.2

InputString1 InputString2

trySplit()

InputString

trySplit() trySplit()

See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

3

Processing Chunks in
Parallel via the Common

Fork-Join Pool

4

• Chunks created by a spliterator are processed in the common fork-join pool

Fork-Join Pool

See gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in Parallel via the Common Fork-Join Pool

http://gee.cs.oswego.edu/dl/papers/fj.pdf

5

• A fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Processing Chunks in Parallel via the Common Fork-Join Pool

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

6

• A fork-join pool provides a high performance, fine-grained task execution
framework for Java data parallelism

• It provides a parallel computing engine for many higher-level frameworks

See www.infoq.com/interviews/doug-lea-fork-join

filter(not(this::urlCached))

collect(toFuture())

map(this::downloadImageAsync)

flatMap(this::applyFiltersAsync)

collect(toList())

Parallel Streams

…

filter(not(this::urlCached))

map(this::downloadImage)

flatMap(this::applyFilters)

Completable Futures

…

ForkJoinPool

Processing Chunks in Parallel via the Common Fork-Join Pool

http://www.infoq.com/interviews/doug-lea-fork-join

7

• ForkJoinPool implements the Executor
Service interface

See docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

Processing Chunks in Parallel via the Common Fork-Join Pool

http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

8

• ForkJoinPool implements the Executor
Service interface

• A ForkJoinPool executes ForkJoinTasks

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

Processing Chunks in Parallel via the Common Fork-Join Pool

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

9

• ForkJoinPool implements the Executor
Service interface

• A ForkJoinPool executes ForkJoinTasks

• ForkJoinTask associates a chunk of data
along with a computation on that data
to enable fine-grained parallelism

See www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismInJava.pdf

Processing Chunks in Parallel via the Common Fork-Join Pool

http://www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismInJava.pdf

10

• A ForkJoinTask is similar to—but lighter weight—than a Java Thread

Thread

ForkJoinTask

e.g., it omits its own run-time stack, registers, thread-local storage, etc.

Processing Chunks in Parallel via the Common Fork-Join Pool

11

• A ForkJoinTask is similar to—but lighter weight—than a Java Thread

• A large # of ForkJoinTasks can thus
run in a small # of Java worker
threads in a ForkJoinPool

ForkJoinTasks

See www.infoq.com/interviews/doug-lea-fork-join

Processing Chunks in Parallel via the Common Fork-Join Pool

http://www.infoq.com/interviews/doug-lea-fork-join

12

Sub-Task1.1

• Parallel streams are a “user
friendly” ForkJoinPool façade

See en.wikipedia.org/wiki/Facade_pattern

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task3.3

Sub-Task3.4

Deque Deque Deque

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

Processing Chunks in Parallel via the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Facade_pattern

13

• You can program directly to
the ForkJoinPool API, though
it can be somewhat painful!

List<List<SearchResults>>

listOfListOfSearchResults =

ForkJoinPool.commonPool()

.invoke(new

SearchWithForkJoinTask

(inputList,

mPhrasesToFind, ...));

I gave you the

chance of

programming

Java streams

willingly

But you have

elected the

way of pain!

See espressoprogrammer.com/fork-join-vs-parallel-stream-java-8

Processing Chunks in Parallel via the Common Fork-Join Pool

http://espressoprogrammer.com/fork-join-vs-parallel-stream-java-8/

14

• You can program directly to
the ForkJoinPool API, though
it can be somewhat painful!

Use the common fork-join
pool to search input strings

for phrases that match

45,000+ phrases

Search Phrases

Input Strings to Search

…

List<List<SearchResults>>

listOfListOfSearchResults =

ForkJoinPool.commonPool()

.invoke(new

SearchWithForkJoinTask

(inputList,

mPhrasesToFind, ...));

Processing Chunks in Parallel via the Common Fork-Join Pool

See livelessons/streamgangs/SearchWithForkJoin.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchStreamGang/src/main/java/livelessons/streamgangs/SearchWithForkJoin.java

15

• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

See en.wikipedia.org/wiki/Divide-and-conquer_algorithm

Long compute() {

long count = 0L;

List<RecursiveTask<Long>> forks =

new LinkedList<>();

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new

FolderSearchTask(sub, mWord);

forks.add(task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task =

new DocSearchTask(doc, mWord);

forks.add(task); task.fork();

}

for (RecursiveTask<Long> task : forks)

count += task.join();

return count; ...

Processing Chunks in Parallel via the Common Fork-Join Pool

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm

16

• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in
document folders

See www.oracle.com/technetwork/articles/java/fork-join-422606.html

Long compute() {

long count = 0L;

List<RecursiveTask<Long>> forks =

new LinkedList<>();

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new

FolderSearchTask(sub, mWord);

forks.add(task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task =

new DocSearchTask(doc, mWord);

forks.add(task); task.fork();

}

for (RecursiveTask<Long> task : forks)

count += task.join();

return count; ...

Processing Chunks in Parallel via the Common Fork-Join Pool

http://www.oracle.com/technetwork/articles/java/fork-join-422606.html

17

• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in
document folders

Long compute() {

long count = 0L;

List<RecursiveTask<Long>> forks =

new LinkedList<>();

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new

FolderSearchTask(sub, mWord);

forks.add(task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task =

new DocSearchTask(doc, mWord);

forks.add(task); task.fork();

}

for (RecursiveTask<Long> task : forks)

count += task.join();

return count; ...

Create a linked list of
recursive task objects

Processing Chunks in Parallel via the Common Fork-Join Pool

18

• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in
document folders

Long compute() {

long count = 0L;

List<RecursiveTask<Long>> forks =

new LinkedList<>();

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new

FolderSearchTask(sub, mWord);

forks.add(task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task =

new DocSearchTask(doc, mWord);

forks.add(task); task.fork();

}

for (RecursiveTask<Long> task : forks)

count += task.join();

return count; ...

Create & fork tasks to
search folders recursively

Processing Chunks in Parallel via the Common Fork-Join Pool

19

• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in
document folders

Long compute() {

long count = 0L;

List<RecursiveTask<Long>> forks =

new LinkedList<>();

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new

FolderSearchTask(sub, mWord);

forks.add(task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task =

new DocSearchTask(doc, mWord);

forks.add(task); task.fork();

}

for (RecursiveTask<Long> task : forks)

count += task.join();

return count; ...

Create & fork tasks
to search documents

Processing Chunks in Parallel via the Common Fork-Join Pool

20

• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in
document folders

Long compute() {

long count = 0L;

List<RecursiveTask<Long>> forks =

new LinkedList<>();

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new

FolderSearchTask(sub, mWord);

forks.add(task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task =

new DocSearchTask(doc, mWord);

forks.add(task); task.fork();

}

for (RecursiveTask<Long> task : forks)

count += task.join();

return count; ...

Return the final count

Processing Chunks in Parallel via the Common Fork-Join Pool

21

• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in
document folders

Long compute() {

long count = 0L;

List<RecursiveTask<Long>> forks =

new LinkedList<>();

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new

FolderSearchTask(sub, mWord);

forks.add(task); task.fork();

}

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task =

new DocSearchTask(doc, mWord);

forks.add(task); task.fork();

}

for (RecursiveTask<Long> task : forks)

count += task.join();

return count; ...

Join all the tasks together &
count the # of search matches

Processing Chunks in Parallel via the Common Fork-Join Pool

22

• All parallel streams in a process
share the common fork-join pool

See dzone.com/articles/common-fork-join-pool-and-streams

Processing Chunks in Parallel via the Common Fork-Join Pool

https://dzone.com/articles/common-fork-join-pool-and-streams

23

• All parallel streams in a process
share the common fork-join pool

• Helps optimize resource utilization
by knowing what cores are being
used globally within a process

See dzone.com/articles/common-fork-join-pool-and-streams

Processing Chunks in Parallel via the Common Fork-Join Pool

https://dzone.com/articles/common-fork-join-pool-and-streams

24

• All parallel streams in a process
share the common fork-join pool

• Helps optimize resource utilization
by knowing what cores are being
used globally within a process

• This “global” vs “local” resource
management tradeoff is common
in computing & other domains

See blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

Processing Chunks in Parallel via the Common Fork-Join Pool

http://blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

25

• There are few “knobs” to control this
(or any) fork-join pool

See www.infoq.com/presentations/tecniques-parallelism-java

Processing Chunks in Parallel via the Common Fork-Join Pool

http://www.infoq.com/presentations/tecniques-parallelism-java

26

• There are few “knobs” to control this
(or any) fork-join pool

• This simplicity is intentional..

See www.youtube.com/watch?v=sq0MX3fHkro

Processing Chunks in Parallel via the Common Fork-Join Pool

https://www.youtube.com/watch?v=sq0MX3fHkro

27

• There are few “knobs” to control this
(or any) fork-join pool

• This simplicity is intentional..

• Contrast ForkJoinPool with
ThreadPoolExecutor

Processing Chunks in Parallel via the Common Fork-Join Pool

28

• There are few “knobs” to control this
(or any) fork-join pool

• This simplicity is intentional..

• Contrast ForkJoinPool with
ThreadPoolExecutor

• However, the size of the common
fork-join pool can be configured

See upcoming lesson on “Java Parallel Stream Internals: Configuration”

System.setProperty

("java.util.concurrent"

+ ".ForkJoinPool.common"

+ ".parallelism",

"8"); Set desired # of threads

Processing Chunks in Parallel via the Common Fork-Join Pool

29

End of Java Parallel Streams
Internals: Parallel Processing
w/the Common Fork-Join Pool

