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• Understand parallel stream internals, e.g.

• Know what can change & what can’t

• Partition a data source into “chunks”

• Process chunks in parallel via the
common fork-join pool

Learning Objectives in this Part of the Lesson
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See developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz

https://developer.ibm.com/languages/java/articles/j-java-streams-3-brian-goetz
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Processing Chunks in 
Parallel via the Common 

Fork-Join Pool
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• Chunks created by a spliterator are processed in the common fork-join pool

Fork-Join Pool

See gee.cs.oswego.edu/dl/papers/fj.pdf

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://gee.cs.oswego.edu/dl/papers/fj.pdf
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• A fork-join pool provides a high performance, fine-grained task execution 
framework for Java data parallelism

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
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• A fork-join pool provides a high performance, fine-grained task execution 
framework for Java data parallelism

• It provides a parallel computing engine for many higher-level frameworks

See www.infoq.com/interviews/doug-lea-fork-join

filter(not(this::urlCached))

collect(toFuture())

map(this::downloadImageAsync)

flatMap(this::applyFiltersAsync)

collect(toList())

Parallel Streams

…

filter(not(this::urlCached))

map(this::downloadImage)

flatMap(this::applyFilters)

Completable Futures

…

ForkJoinPool

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://www.infoq.com/interviews/doug-lea-fork-join
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• ForkJoinPool implements the Executor 
Service interface

See docs.oracle.com/javase/tutorial/essential/concurrency/executors.html

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://docs.oracle.com/javase/tutorial/essential/concurrency/executors.html
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• ForkJoinPool implements the Executor 
Service interface

• A ForkJoinPool executes ForkJoinTasks

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html

Processing Chunks in Parallel via the Common Fork-Join Pool 

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinTask.html
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• ForkJoinPool implements the Executor 
Service interface

• A ForkJoinPool executes ForkJoinTasks

• ForkJoinTask associates a chunk of data 
along with a computation on that data
to enable fine-grained parallelism

See www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismInJava.pdf

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://www.dre.vanderbilt.edu/~schmidt/PDF/DataParallelismInJava.pdf
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• A ForkJoinTask is similar to—but lighter weight—than a Java Thread

Thread

ForkJoinTask

e.g., it omits its own run-time stack, registers, thread-local storage, etc. 

Processing Chunks in Parallel via the Common Fork-Join Pool 
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• A ForkJoinTask is similar to—but lighter weight—than a Java Thread

• A large # of ForkJoinTasks can thus 
run in a small # of Java worker 
threads in a ForkJoinPool

ForkJoinTasks

See www.infoq.com/interviews/doug-lea-fork-join

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://www.infoq.com/interviews/doug-lea-fork-join
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Sub-Task1.1

• Parallel streams are a “user 
friendly” ForkJoinPool façade

See en.wikipedia.org/wiki/Facade_pattern

Sub-Task1.2

Sub-Task1.3

Sub-Task1.4

Sub-Task3.3

Sub-Task3.4

Deque Deque Deque

map(phrase -> searchForPhrase(…))

filter(not(SearchResults::isEmpty))

collect(toList())

45,000+ phrases

Search Phrases

Processing Chunks in Parallel via the Common Fork-Join Pool 

https://en.wikipedia.org/wiki/Facade_pattern
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• You can program directly to 
the ForkJoinPool API, though 
it can be somewhat painful!

List<List<SearchResults>> 

listOfListOfSearchResults =

ForkJoinPool.commonPool()

.invoke(new    

SearchWithForkJoinTask

(inputList, 

mPhrasesToFind, ...));

I gave you the 

chance of 

programming 

Java streams

willingly

But you have 

elected the 

way of pain!

See espressoprogrammer.com/fork-join-vs-parallel-stream-java-8

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://espressoprogrammer.com/fork-join-vs-parallel-stream-java-8/


14

• You can program directly to 
the ForkJoinPool API, though 
it can be somewhat painful!

Use the common fork-join 
pool to search input strings 

for phrases that match

45,000+ phrases

Search Phrases

Input Strings to Search

…

List<List<SearchResults>> 

listOfListOfSearchResults =

ForkJoinPool.commonPool()

.invoke(new    

SearchWithForkJoinTask

(inputList, 

mPhrasesToFind, ...));

Processing Chunks in Parallel via the Common Fork-Join Pool 

See livelessons/streamgangs/SearchWithForkJoin.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/SearchStreamGang/src/main/java/livelessons/streamgangs/SearchWithForkJoin.java
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• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

See en.wikipedia.org/wiki/Divide-and-conquer_algorithm

Long compute() { 

long count = 0L; 

List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new 

FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 

} 

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 

new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 

} 

for (RecursiveTask<Long> task : forks) 

count += task.join();

return count; ...

Processing Chunks in Parallel via the Common Fork-Join Pool 

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
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• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in 
document folders

See www.oracle.com/technetwork/articles/java/fork-join-422606.html

Long compute() { 

long count = 0L; 

List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new 

FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 

} 

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 

new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 

} 

for (RecursiveTask<Long> task : forks) 

count += task.join();

return count; ...

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://www.oracle.com/technetwork/articles/java/fork-join-422606.html
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• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in 
document folders

Long compute() { 

long count = 0L; 

List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new 

FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 

} 

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 

new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 

} 

for (RecursiveTask<Long> task : forks) 

count += task.join();

return count; ...

Create a linked list of 
recursive task objects

Processing Chunks in Parallel via the Common Fork-Join Pool 
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• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in 
document folders

Long compute() { 

long count = 0L; 

List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new

FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 

} 

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 

new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 

} 

for (RecursiveTask<Long> task : forks) 

count += task.join();

return count; ...

Create & fork tasks to 
search folders recursively

Processing Chunks in Parallel via the Common Fork-Join Pool 
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• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in 
document folders

Long compute() { 

long count = 0L; 

List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new 

FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 

} 

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 

new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 

} 

for (RecursiveTask<Long> task : forks) 

count += task.join();

return count; ...

Create & fork tasks 
to search documents

Processing Chunks in Parallel via the Common Fork-Join Pool 
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• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in 
document folders

Long compute() { 

long count = 0L; 

List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new 

FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 

} 

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 

new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 

} 

for (RecursiveTask<Long> task : forks) 

count += task.join();

return count; ...

Return the final count

Processing Chunks in Parallel via the Common Fork-Join Pool 
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• ForkJoinPool is best used for
programs that don’t match the
parallel streams model

• e.g., this program counts the
occurrence of a word in 
document folders

Long compute() { 

long count = 0L; 

List<RecursiveTask<Long>> forks = 

new LinkedList<>(); 

for (Folder sub : mFolder.getSubs()){

FolderSearchTask task = new 

FolderSearchTask(sub, mWord); 

forks.add(task); task.fork(); 

} 

for (Doc doc : mFolder.getDocs()) {

DocSearchTask task = 

new DocSearchTask(doc, mWord); 

forks.add(task); task.fork(); 

} 

for (RecursiveTask<Long> task : forks) 

count += task.join();

return count; ...

Join all the tasks together & 
count the # of search matches

Processing Chunks in Parallel via the Common Fork-Join Pool 
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• All parallel streams in a process 
share the common fork-join pool

See dzone.com/articles/common-fork-join-pool-and-streams

Processing Chunks in Parallel via the Common Fork-Join Pool 

https://dzone.com/articles/common-fork-join-pool-and-streams
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• All parallel streams in a process 
share the common fork-join pool

• Helps optimize resource utilization 
by knowing what cores are being 
used globally within a process

See dzone.com/articles/common-fork-join-pool-and-streams

Processing Chunks in Parallel via the Common Fork-Join Pool 

https://dzone.com/articles/common-fork-join-pool-and-streams
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• All parallel streams in a process 
share the common fork-join pool

• Helps optimize resource utilization 
by knowing what cores are being 
used globally within a process

• This “global” vs “local” resource
management tradeoff is common 
in computing & other domains

See blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://blog.tsia.com/blog/local-or-global-resource-management-which-model-is-better
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• There are few “knobs” to control this 
(or any) fork-join pool

See www.infoq.com/presentations/tecniques-parallelism-java

Processing Chunks in Parallel via the Common Fork-Join Pool 

http://www.infoq.com/presentations/tecniques-parallelism-java
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• There are few “knobs” to control this 
(or any) fork-join pool

• This simplicity is intentional..

See www.youtube.com/watch?v=sq0MX3fHkro

Processing Chunks in Parallel via the Common Fork-Join Pool 

https://www.youtube.com/watch?v=sq0MX3fHkro


27

• There are few “knobs” to control this 
(or any) fork-join pool

• This simplicity is intentional..

• Contrast ForkJoinPool with 
ThreadPoolExecutor

Processing Chunks in Parallel via the Common Fork-Join Pool 
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• There are few “knobs” to control this 
(or any) fork-join pool

• This simplicity is intentional..

• Contrast ForkJoinPool with 
ThreadPoolExecutor

• However, the size of the common
fork-join pool can be configured

See upcoming lesson on “Java Parallel Stream Internals: Configuration”

System.setProperty

("java.util.concurrent"

+ ".ForkJoinPool.common" 

+ ".parallelism", 

"8"); Set desired # of threads

Processing Chunks in Parallel via the Common Fork-Join Pool 



29

End of Java Parallel Streams 
Internals: Parallel Processing 
w/the Common Fork-Join Pool


