
Java Stream Internals: Construction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software 

Integrated Systems

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand stream internals, e.g.

• Know what can change & what can’t

• Recognize how a Java stream is 
constructed

Learning Objectives in this Part of the Lesson

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

Output h(g(f(x)))



3

Java Stream Construction



4

• Recall that intermediate operations are “lazy”

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation

Input x

Output f(x)

Output g(f(x))

Java Stream Construction

…

Stream sorted()

Output h(g(f(x)))

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation


5

• Recall that intermediate operations are “lazy”

• i.e., they don’t start to run until 
a terminal operator is reached

See www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

Output h(g(f(x)))

Java Stream Construction

http://www.logicbig.com/tutorials/core-java-tutorial/java-util-stream/lazy-evaluation


6

• A stream pipeline is constructed at runtime via an internal representation

See developer.ibm.com/technologies/java/articles/j-java-streams-3-brian-goetz/#building-a-stream-pipeline

At runtime a linked list of stream 
source & intermediate operations 
is built, one per “stage” in pipeline

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

List<String> ls = ...

List<String> sortedAWords = ls

.stream()

.map(String::toUpperCase)

.filter(s -> 

s.startsWith("A"))

.sorted()

.collect(toList());

Output h(g(f(x)))

Java Stream Construction

https://developer.ibm.com/technologies/java/articles/j-java-streams-3-brian-goetz/#building-a-stream-pipeline


7

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

Stream Flag Interpretation

SIZED Size of stream is known

DISTINCT Elements of stream are 
distinct

SORTED Elements of the stream 
are sorted in natural order

ORDERED Stream has meaningful 
encounter order

These flags are a subset of the flags that can be defined by a spliterator

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Output h(g(f(x)))

Java Stream Construction

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

Stream sorted()



8

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

• Source stage stream flags are derived 
from spliterator characteristics, e.g. Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

Output h(g(f(x)))

Java Stream Construction

Stream generate() & iterate() methods create streams that are not sized!

Collection Sized Ordered Sorted Distinct

ArrayList  

HashSet  

TreeSet    



9

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

• Source stage stream flags are derived 
from spliterator characteristics

• Each intermediate operation affects 
the stream flags

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Output h(g(f(x)))

Java Stream Construction

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

Stream sorted()



10

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

• Source stage stream flags are derived 
from spliterator characteristics

• Each intermediate operation affects 
the stream flags, e.g.

• map()

• Clears SORTED & DISTINCT
but keeps SIZED

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

Output h(g(f(x)))

Java Stream Construction

Stream map(Function<…> mapper)



11

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

• Source stage stream flags are derived 
from spliterator characteristics

• Each intermediate operation affects 
the stream flags, e.g.

• map()

• filter()

• Keeps SORTED & DISTINCT
but clears SIZED

Stream map(Function<…> mapper)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

Output h(g(f(x)))

Java Stream Construction

Stream filter(Predicate<…> pred)



12

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

• Source stage stream flags are derived 
from spliterator characteristics

• Each intermediate operation affects 
the stream flags, e.g.

• map()

• filter()

• sorted()

• Keeps SIZED & DISTINCT & 
adds SORTED 

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Output h(g(f(x)))

Java Stream Construction

Stream sorted()



13

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

• Source stage stream flags are derived 
from spliterator characteristics

• Each intermediate operation affects 
the stream flags 

• The flags at each stage are updated 
as the pipeline is being constructed

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

Output h(g(f(x)))

Java Stream Construction



14

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

• Source stage stream flags are derived 
from spliterator characteristics

• Each intermediate operation affects 
the stream flags 

• The flags at each stage are updated 
as the pipeline is being constructed

• e.g., flags for a previous stage are 
combined with the current stage’s 
behavior to derive a new set of flags

Stream map(Function<…> mapper)

Stream filter(Predicate<…> pred)

R collect(Collector<…> collector)

Input x

Output f(x)

Output g(f(x))

…

Stream sorted()

Output h(g(f(x)))

Java Stream Construction



15

• A stream pipeline is constructed at runtime via an internal representation

• Each pipeline stage is described by a 
bitmap of stream flags internally

• Source stage stream flags are derived 
from spliterator characteristics

• Each intermediate operation affects 
the stream flags 

• The flags at each stage are updated 
as the pipeline is being constructed

• e.g., flags for a previous stage are 
combined with the current stage’s 
behavior to derive a new set of flags

Set<String> ts = 

new TreeSet<>(...);

List<String> sortedAWords = 

ts

.stream()

.filter(s -> 

s.startsWith("A"))

.sorted()

.collect(toList());

The streams framework removes 
redundant operations since the 

source is already sorted 

Java Stream Construction



16

End of Java Stream Internals: 
Construction


