
Overview of Java Streams

Terminal Operations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of stream terminal operations

3

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of stream terminal operations Input x

Output f(x)

Output g(f(x))

Intermediate operation (Behavior f)

Intermediate operation (Behavior g)

Terminal operation (Behavior h)

These operations also apply to
both sequential & parallel streams

4

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of stream terminal operations

We continue to showcase
the “Hamlet” program

of(“horatio”, “laertes”, “Hamlet”, …)

filter(s->toLowerCase(s.charAt(0)…)

sorted()

map(this::capitalize)

Stream of names

Stream of names starting with ‘h’

Stream of capitalized names

Stream of sorted names

Array of names

forEach()

5

Overview of
Terminal Operations

6

• Every stream finishes with a terminal
operation that yields a non-stream
result

Intermediate operation (behavior f)

Intermediate operation (behavior g)

Terminal operation (behavior h)

Output f(x)

Output g(f(x))

…

Input x

Overview of Common Stream Terminal Operations

See github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Stream

.of("horatio",

"laertes",

"Hamlet", ...)

.filter(s -> toLowerCase

(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach(System.out::println);

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

7

• Every stream finishes with a terminal
operation that yields a non-stream
result, e.g.

• No value at all

• e.g., forEach() &
forEachOrdered()

Overview of Common Stream Terminal Operations

forEach() & forEachOrdered()
only have side-effects!

8

• Every stream finishes with a terminal
operation that yields a non-stream
result, e.g.

• No value at all

• e.g., forEach() &
forEachOrdered()

Overview of Common Stream Terminal Operations
Stream

.of("horatio",

"laertes",

"Hamlet", ...)

.filter(s -> toLowerCase

(s.charAt(0)) == 'h')

.map(this::capitalize)

.sorted()

.forEach

(System.out::println);

Print each character in Hamlet that starts with ‘H’
or ‘h’ in consistently capitalized & sorted order.

9

• Every stream finishes with a terminal
operation that yields a non-stream
result, e.g.

• No value at all

• The result of a reduction
operation

• e.g., collect() & reduce()

See docs.oracle.com/javase/tutorial/collections/streams/reduction.html

Overview of Common Stream Terminal Operations

https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

10

• Every stream finishes with a terminal
operation that yields a non-stream
result, e.g.

• No value at all

• The result of a reduction
operation

• e.g., collect() & reduce()

Overview of Common Stream Terminal Operations

Intermediate operation (behavior f)

Output f(x)

Output g(f(x))

Intermediate operation (behavior g)

Terminal operation (behavior h)

…

Input x

parallelStream()

collect() & reduce() terminal operations
work seamlessly with parallel streams.

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

11

• Every stream finishes with a terminal
operation that yields a non-stream
result, e.g.

• No value at all

• The result of a reduction
operation

• An Optional or boolean value

• e.g., findAny(), findFirst(),
noneMatch(), etc.

Overview of Common Stream Terminal Operations

See dzone.com/articles/collectors-part-1-%E2%80%93-reductions

List<String> countries = Arrays

.asList("france", "india",

"china", "usa");

print(countries.stream()

.filter(country -> country

.contains("i"))

.findFirst().get());

print(countries.stream()

.filter(country -> country

.contains("i"))

.findAny().get());

print(countries.stream()

.noneMatch(country -> country

.contains("z")));

These terminal operations
are “short-circuiting”

https://dzone.com/articles/collectors-part-1-%E2%80%93-reductions

12

• A terminal operation also triggers all the
(“lazy”) intermediate operation processing

Overview of the collect() Terminal Operation

Intermediate operation (behavior f)

Output f(x)

Output g(f(x))

Intermediate operation (behavior g)

Terminal operation (behavior h)

…

Input x

stream()

13

End of Overview of Java
Streams Terminal Operations

