Terminal Operations

Douglas C. Schmidt
id.schmidi@vanderhbiit.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderhilt University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality
of stream terminal operations

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality ----cc - m oo -

of stream terminal operations

Intermediate operation (Behavior f)
L

Intermediate operation (Behavior g)

These operations also apply to
both sequential & parallel streams

@ '\ Output g(f(x))
L

|
|

|

|

|

|

I | | il Output f(x)
| I

|

|

|

|

|

|

|

Terminal operation (Behavior h)

Learning Objectives in this Part of the Lesson

« Understand the structure & functionality
of stream terminal operations @Array of names

of(*horatio”, laertes”, “Hamlet”, ...)

{} Stream of names

filter(s->toLowerCase(s.charAt(0)...)
{} Stream of names starting with ‘h’

We continue to showcase map(this::capiaiize)
the "Hamlet” program {} Stream of capitalized names
sorted()
\ {} Stream of sorted names
forEach()

Overview of
Terminal Operations

Overview of Common Stream Terminal Operations

» Every stream finishes with a terminal
operation that yields a non-stream

| | | [...

result

-~

Stream
.of ("horatio",
"laertes", -
"Hamlet", ...)
.filter (s -> toLowerCase
(s.charAt(0)) == 'h')
.map (this: :capitalize)
.sorted ()
.forEach (System.out: :println) ;

Q g Input X

Intermediate operation (behavior f)

! I Output f(x)

Intermediate operation (behavior Q)

& | I Output g(f(x))

Terminal operation (behavior h)

»

See github.com/douglascraigschmidt/LivelLessons/tree/master/Java8/ex12

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Java8/ex12

Overview of Common Stream Terminal Operations

» Every stream finishes with a terminal

operation that yields a non-stream 3 =
result, e.g.
* No value at all
. e.g., forEach() & /.73 May CaUSe
forEachOrdered() 1}" DlZZIness ;
May Ca USe
forEach() & forEachOrdered()
only have side-effects! A hea d aChe
0 NOT take with
Nitrates.

Overview of Common Stream Terminal Operations

 Every stream finishes with a terminal stream

operation that yields a non-stream .of ("horatio",

result, e.g. "laertes",

- No value at all "Hamlet”, -...)
.filter (s -> toLowerCase

» e.g., forEach() & (s.charAt(0)) == 'h')
forEachOrdered() .map (this: :capitalize)

.sorted()
.forEach

////// (System.out: :println) ;

Print each character in Hamlet that starts with 'H’
or ‘h’in consistently capitalized & sorted order.

Overview of Common Stream Termlnal Operatlons

» Every stream finishes with a terminal P
operation that yields a non-stream
result, e.g.

* The result of a reduction
operation

« e.g., collect() & reduce()

See docs.oracle.com/javase/tutorial/collections/streams/reduction.html

https://docs.oracle.com/javase/tutorial/collections/streams/reduction.html

Overview of Common Stream Terminal Operations

» Every stream finishes with a terminal

operation that yields a non-stream = - o
result, e.g. % ! ~%
: parallelStream()
I I
* The result of a reduction @ :u Input x
operation .

Intermediate operation (behavior f)

[
|

I

|

|

|

|

I

|

|

4 ; :I Output f(x) :
1 I

|

|

|

I

|

|

I

» e.g., collect() & reduce()

collect() & reduce() terminal operations

Intermediate operation (behavior g)
work seamlessly with parallel streams. :

@ '\ Output g(f(x))

Terminal operation (behavior h)

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Overview of Common Stream Terminal Operations

» Every stream finishes with a terminal List<String> countries = Arrays

operation that yields a non-stream .asList("france", "india",
result, e.q. "china", "usa");
print (countries.stream()
.filter (country -> country

.contains ("i"))
.findFirst() .get());

« An Optional or boolean value print (countries.stream/()

. e.g., findAny(), findFirst(), .filter (country -> country

.contains ("i"))
noneMatch(), etc. _£indAny () .get()) ;

print (countries.stream()
.noneMatch (country -> country
.contains("z")));

These terminal operations
are "short-circuiting”

See dzone.com/articles/collectors-part-1-%E2%80%93-reductions

https://dzone.com/articles/collectors-part-1-%E2%80%93-reductions

Overview of the collect() Terminal Operation

« A terminal operation also triggers all the | || | o

(“lazy”) intermediate operation processing |==--==-==-=======~-

I%

stream()

@ Input x

Intermediate operation (behavior f)

|
|
|
|
|
|
|
|
|
@ Outputf(x) |
|
|
|
|
|
|
|
|

Intermediate operation (behavior Q)

@ Output g(f(x))

Terminal operation (behavior h)

End of Overview of Java
Streams Terminal Operations

13

