Douglas C. Schmidt
id.schmidt@vanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderhilt University
Nashville, Tennessee, USA

vV



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Recognize common factory methods used to cr
_ g . . w— < * S—— - *

. -




Common Factory Methods
for Creating Streams




Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream
- S - R - ,.7_;-,'»-4»-..

P . ———
-~



https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a Java collection

List<String> wordsToFind =
List.of("do", "re", "me", ...);

List<SearchResults> results
wordsToFind.stream/()
or

List<SearchResults> results =
wordsToFind.parallelStream ()




Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a Java collection _ _ _
List<String> wordsToFind =

List.of ("do", "re", "me", ...);

List<SearchResults> results =
wordsToFind.stream/()

or

See docs.oracle.com/javase/tutorial/collections/streams



https://docs.oracle.com/javase/tutorial/collections/streams

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.
« From a Java collection

List<String> wordsToFind =
List.of ("do", "re", "me", ...);

List<SearchResults> results =

wordsToFind.stream/()

—,

We use this approach in the
SimpleSearchStream program

See github.com/douglascraigschmidt/Livelessons/tree/master/Sim

nleSearchStream



https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleSearchStream

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a Java collection _ _ _
List<String> wordsToFind =

List.of ("do", "re", "me", ...);

or

List<SearchResults> results =
wordsToFind.parallelStream/()

See docs.oracle.com/javase/tutorial/collections/streams/parallelism.html



https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.
« From a Java collection

List<String> wordsToFind =
List.of ("do", "re", "me", ...);

or

List<SearchResults> results =
wordsToFind.stream()

A call to parallel() can appear e
anywhere in a stream & will have | -parallel()
same effect as paralle/Stream() L—

See docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel



https://docs.oracle.com/javase/8/docs/api/java/util/stream/BaseStream.html#parallel--

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

String[] a = {
° From an array "a" , "b" , "c" , "d" , "e"
};

Stream<String> stream = Arrays.stream(a);

stream. forEach (s ->
System.out.println(s)) ;

or

stream. forEach (System.out: :println) ;

10



Common Factory Methods for Creating Streams
» There are several common ways to obtain a stream, e.q.

String[] a = {
° From an array "a" , "b" , "c" , "d" , "e"
};

Stream<String> stream = Arrays.stream(a);

///////////’stream.forEach(s ->
System.out.println(s)) ;

Create stream containing
all elements in an array | or

stream. forEach (System.out: :println) ;

See docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream



https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#stream-T:A-

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

String[] a = {
° From an array "a" , "b" , "c" , "d" , "e"
};

Stream<String> stream = Arrays.stream(a);

stream. forEach (s ->

////,////// System.out.println(s)) ;
Print all elements

in the stream or\

stream. forEach (System.out: :println) ;

12



Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

String[] a = {
"a" , "b" , "c" , "d" , "e"

. From a static factory !’

method Stream<String> stream = Stream.of (a);

stream. forEach (s ->
System.out.println(s)) ;

or

stream. forEach (System.out: :println) ;

13



Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

String[] a = {
"a" , Hb" , Hc" , "d" , He"

. From a static factory !’

method Stream<String> stream = Stream.of (a);

///////////’stream.forEach(s ->
System.out.println(s)) ;

Create stream containing
all elements in an array | or

stream. forEach (System.out: :println) ;

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html|#of



https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#of-T-

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

String[] a = {
"a" , Hb" , Hc" , "d" , He"

. From a static factory !’

method Stream<String> stream = Stream.of (a);
stream. forEach (s ->
//////,/’// System.out.println(s)) ;
Print all elements
in the stream or

stream. forEach (System.out: :println) ;

15



Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a static factory
method

Stream.iterate (new BigInteger[] {BigInteger.ONE,
BigInteger.ONE},
f -> new BigInteger[]{£f[1],
£[0] .add(£[1])})
.map(f -> £[0])
.1imit (100)
.forEach (System.out: :println) ;

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#iterate



https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#iterate-T-java.util.function.UnaryOperator-

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

Generate & print the first 100 Fibonacci #s

« From a static factory
method /

Stream.iterate (new BigInteger[] {BigInteger.ONE,
BigInteger.ONE},
f -> new BigInteger[]{£f[1],
£[0] .add(£[1])})
.map(f -> £[0])
.1imit (100)
.forEach (System.out: :println);

17



Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

Create the "seed,” which defines
« From a static factory the initial element in the stream

method /

Stream.iterate (new BigInteger[] {BigInteger.ONE,
BigInteger.ONE},
f -> new BigInteger[]{£f[1],
£[0] .add(£[1])})

.map(f -> £[0])
.1imit (100)
.forEach (System.out: :println) ;

18



Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a static factory
method

Stream.iterate (new BigInteger[] {BigInteger.ONE,
BigInteger.ONE},
f -> new BigInteger[]{£f[1],

f[0].add(£f[1])})
.map(f -> £[0])
.1imit (100) A lambda function applied
.forEach (System.out: :println); to the previous element to
produce a new element

19



Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a static factory
method

Stream.iterate (new BigInteger[] {BigInteger.ONE,
BigInteger.ONE},
f -> new BigInteger[]{£f[1],
£[0] .add(£f[1])})

.map (f -> f[O])Hﬁ‘_‘Ehhﬁ‘_
.1imit (100) Convert the array to its first element

.forEach (System.out: :println) ;

20



Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a static factory
method

Stream.iterate (new BigInteger[] {BigInteger.ONE,
BigInteger.ONE},
f -> new BigInteger[]{£f[1],
£[0] .add(£f[1])})

.map(f -> £[0]) —— —
.1i§it (100) Short-circuit operation limits

the stream to 100 elements

.forEach (System.out: :println) ;

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#limit



https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#limit-long-

Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a static factory
method

Stream.iterate (new BigInteger[] {BigInteger.ONE,
BigInteger.ONE},
f -> new BigInteger[]{£f[1],
£[0] .add(£f[1])})
.map(f -> £[0])
.1imit (100) 1 Print the first 100
.forEach (System.out: :println); Fibonacci #%s

22



Common Factory Methods for Creating Streams

» There are several common ways to obtain a stream, e.q.

« From a static factory
method

Stream.iterate (new BigInteger[] {BigInteger.ONE,
BigInteger.ONE},
f -> new BigInteger[]{£f[1],
£[0] .add(£[1])})

])\ Avoid using iterate() (& perhaps

even limit()) in a parallel stream/!

23



End of Common Java
Streams Factory Methods

24



