Applying Key Operators in Project Reactor:

Gase Study ex4 (Part 2)

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

 Part 2 of case study ex4 shows how return Stream
to integrate Java Streams operations ~ -generate(() ->
generate(), limit(), map(), & collect() makeBigFraction (fSRfND)O)M'
with Project Reactor Mono operators . a.se
. .1
fromCallable(), then(), materialize(), imlt (sMAX_FRACTIONS)

_ . .map (unreducedBigFraction ->
firstWithSignal(), map(), flatMap(), reduceAndMul tiplyFraction

subscribeOn(), & when() to create, (unreducedBigFraction,
reduce, multiply, & display BigFraction Schedulers . fromExecutor
objects asynchronously (ForkJoinPool

.commonPool ())))
.collect (toMono())
.flatMap (list -> BigFractionUtils
.sortAndPrintList(list, sb));

See github.com/douglascraigschmidt/Livel essons/tree/master/Reactive/flux/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Learning Objectives in this Part of the Lesson

» Part 2 of case study ex4 shows how return monos -> Mono
to integrate Java Streams operations - when (monos)
generate(), limit(), map(), & collect()
with Project Reactor Mono operators
fromCallable(), then(), materialize(),
firstWithSignal(), map(), flatMap(),
subscribeOn(), & when() to create,
reduce, multiply, & display BigFraction .map (Mono: :block)
objects asynchronously

« It also shows how to implement a
Java Streams Collector for
asynchronous Mono objects

.materialize ()

.flatMap (v -> Flux
.fromIterable (monos)

.collect(toList()));

See github.com/douglascraigschmidt/Livel essons/tree/master/Reactive/flux/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

Applying Key Operators
In Project Reactor to ex4

Applying Key Operators in Project Reactor to ex4

ex4 src - main java € FluxEx

Project Fily €3 = O -

¥ Ui flux-exd

I Project

~ [main sre/main
v [java
> utils
& exa
> (& FluxEx

Structure

% main.iml
~ 75 DADouglas Schmidt\Dropbox\De
gradle

¢ Commit

idea
build
gradle

src

F Pull Requests

classpath
-gitignore

s 0

project
build.gradle
gradlew
gradlew bat
settings.gradle
> Extensions

% Favorites

K Gt =710D0 P Run @ Problems

[m}

B File Edit view Navigate Code Analyze Refactor Build Run Tools Git Window Help

m testFractionMultiplicationsBlockingSubscriber

€ FluxExjava

@

B4 Terminal

flux-ex3 [D:\Douglas Schmidt\Dropbox\Documentsiopp\Pearson\LivelLessons\Reactive\Flux\ex4]

A

FluxEx java [flux

b G

exd.main]
7 flux-exd ¥
@ exdjava settings.gradle (flux-ex4)

import

VEzS
* This class shows how to apply Project Reactor features
* asynchronously to perform a range of Flux operations, including
* fromArray(), map(), flatMap(), collect(), subscribeOn(), and
* various types of thread pools. It also shows various Mono
* operations, such as when(), firstWithSignal(), materialize(),

* flatMap(), flatMapMany(), subscribeOn(), and the parallel thread

* pool. In addition, it demonstrates how to combine the Java streams
* framework with the Project Reactor framework.
%/

@SuppressWarnings("ALL")
public class FLuxEx {
VELd
* Create a random number generator.
*/
private static final Random sRANDOM = new Random();

VEZS
* Test BigFraction multiplications by combining the Java streams
* framework with the Project Reactor framework and the Java
* common fork-join framework.

*/
public static Mono<Void> testFractionMultiplicationsStreams() {
StringBuffer sh =

“\ Build

The IDE modules below were remaved by the Gradle project reload: flux-ex3.test // // You can open a dialog to select the ones you need to restore. (a minute ago)

- X

Git ¥ ¥ A o m BOQ
-

@

v §

B

@ EventLog
105:23 CRLF UTF-B8 4spaces P master

See github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex4

End of Applying Key Methods
In Project Reactor:
Case Study ex4 (Part 2)

6

