Key Combining Operators

in the Flux Class (Part 2}

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in th|s Part of the Lesson
» Recognize key Flux operators i P

« Combining operators

» These operators create a Flux
from multiple sources or
iterations

- e.g., reduce(), collectList(),
& collect()

Key Combining Operators
in the Flux Class

Key Combining Operators in the Flux Class
« The reduce() operator Mono<U> reduce

- Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of
the same type as the emitted items

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#reduce-java.util.function.BiFunction-

Key Combining Operators in the Flux Class

« The reduce() operator Mono<U> reduce
. BiFunction<T, T, T> reducer
« Reduce the values from this Flux ()
sequence into a single object of terface BiFunction-T:0;R>
the same type as the emitted items Iype Parameters:
. . . T - the type of the first argument to the function
¢ Reductlon IS performed USIng a U - the type of the second argument to the function
BIFunCtIOn param R - the type of the result of the function

All Known Subinterfaces:

BinaryOperator<T>

Functional Interface:

This is a functional interface and can therefore be used
as the assignment target for a lambda expression or
method reference.

See docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/BiFunction.html?is-external=true

Key Combining Operators in the Flux Class

« The reduce() operator Mono<U> reduce
. Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of Flux of Integers from 1..4
the same type as the emitted items 1 > 3 2
. R_educti_on is performed using a 0 —>
BiFunction param
« This param is passed the 1—
intermediate result of the
reduction & the current value 3+
SIS
This value is initialized
to zero (0) for Integer 10

6

Key Combining Operators in the Flux Class

* The reduce() operator

« Reduce the values from this Flux
sequence into a single object of
the same type as the emitted items

« Reduction is performed using a
BiFunction param

» This param is passed the
intermediate result of the
reduction & the current value

It returns the next intermediate
value of the reduction

Mono<U> reduce

(BiFunction<T, T, T> reducer)

Fqu of Integers from 1.4

0 —>=—7$

|
3 4

—
S
10

Key Combining Operators in the Flux Class

* The reduce() operator Mono<U> reduce
« Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of Fqu of Integ ore from {4

the same type as the emitted items '

3 4
» Reduction is performed using a 0 _)
BiFunction param
« This param is passed the

intermediate result of the
reduction & the current value @

)
« The process repeats for each pair of values 10

8

Key Combining Operators in the Flux Class

« The reduce() operator Mono<U> reduce
- Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of Flux of Integers from 1..4
the same type as the emitted items 1 > é 4'1
. R_educti_on is performed using a 0 —>
BiFunction param
« This param is passed the 1 —>(+)
intermediate result of the
reduction & the current value @

)
« The process repeats for each pair of values 10

9

Key Combining Operators in the Flux Class

« The reduce() operator Mono<U> reduce
- Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of Flux of Integers from 1..4
the same type as the emitted items 1 > é 4'1
. R_educti_on is performed using a 0 —>
BiFunction param
« This param is passed the 1 —>(+)
intermediate result of the
reduction & the current value @

)
« The process repeats for each pair of values 10

10

Key Combining Operators in the Flux Class

« The reduce() operator Mono<U> reduce
- Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of Flux of Integers from 1..4
the same type as the emitted items 1 > é 4'1
. R_educti_on is performed using a 0 —>
BiFunction param
« This param is passed the 1—
intermediate result of the

reduction & the current value S—>(+
@
« The process repeats for each pair of values 10

11

Key Combining Operators in the Flux Class

« The reduce() operator Mono<U> reduce
- Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of Flux of Integers from 1..4
the same type as the emitted items 1 > é Z'l
. R_educti_on is performed using a 0 —>
BiFunction param
« This param is passed the 1—
intermediate result of the

reduction & the current value S—>(+
@
« The process repeats for each pair of values 10

12

Key Combining Operators in the Flux Class

* The reduce() operator

« Reduce the values from this Flux
sequence into a single object of

the same type as the emitted items

» Reduction is performed using a
BiFunction param

» This param is passed the
intermediate result of the
reduction & the current value

6 J
« The process repeats for each pair of values

Mono<U> reduce
(BiFunction<T, T, T> reducer)

Flux of Integers from 1..4
| |

1

-~

1

>

2

3

3

—>(+

4

13

Key Combining Operators in the Flux Class
« The reduce() operator Mono<U> reduce

- Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of
the same type as the emitted items

« The result of the reduced Flux is
emitted from the final call as sole
item of a Mono

14

Key Combining Operators in the Flux Class
« The reduce() operator Mono<U> reduce

- Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of
the same type as the emitted items

« The result of the reduced Flux is
emitted from the final call as sole
item of a Mono

« If the Flux emits no items Mono
will be empty

15

Key Combining Operators in the Flux Class
« The reduce() operator Mono<U> reduce

- Reduce the values from this Flux (BiFunction<T, T, T> reducer)
sequence into a single object of
the same type as the emitted items

« The result of the reduced Flux is
emitted from the final call as sole
item of a Mono

 The internally accumulated value is discarded upon cancellation or error

16

Key Combining Operators in the Flux Class

« The reduce() operator H

« Upstream must signal onComplete()
before accumulator can be emitted

return Flux
.fromArray (bigFractions)

.flatMap (bf ->
multiplyFractions (bf,

resl'uce ((':"‘,Q) — O)
®

Schedulers.parallel()))

.reduce (BigFraction: :add)

\

Sum results of async multiplications

See Reactive/flux/ex3/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Combining Operators in the Flux Class

* The reduce() operator

« Upstream must signal onComplete()
before accumulator can be emitted

» Sources that are infinite & never
complete will never emit anything
through this operator

v

' ' '
' ' '
' ' '
" ’% ’ \: "%

reduce ((‘ Q)-»O)
©'

18

Key Combining Operators in the Flux Class

* The reduce() operator

« Upstream must signal onComplete()
before accumulator can be emitted

» Sources that are infinite & never
complete will never emit anything
through this operator

« An infinite source may lead to a
fatal OutOfMemoryError

!

Error: Out of Memory.

|

19

Key Combining Operators in the Flux Class
« The reduce() operator Q O 0 | >

V ol AV Ay
reduce{(<> D) DQ}

v

« RxJava’s Observable.reduce()

operator works the same Sum the results of

return Observable iyl
.fromArray (bigFractions) / async muitipiications

.flatMap (bf ->
multiplyFrations (bf, Schedulers.computation()))
.reduce (BigFraction: :add)

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#reduce-io.reactivex.rxjava3.functions.BiFunction-

Key Combining Operators in the Flux Class

* The reduce() operator reduce

Optional<T> reduce(BinaryOperator<T> accumulator)

Performs a reduction on the elements of this stream, using an associative
accumulation function, and returns an Optional describing the reduced
value, if any. This is equivalent to:

boolean foundAny = false;
T result = null;
for (T element : this stream) {
if (!foundAny) {
foundAny = true;
result = element;

}

else
result = accumulator.apply(result, element);

« Similar to the Stream.reduce()) | |
. return foundAny ? Optional.of(result) : Optional.empty();
method in Java Streams
int result = List

.of(1, 2, 3, 4, 5, 6).stream() -
.reduce (0, Math::addExact) ; Sum the #5 together

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#reduce-java.util.function.BinaryOperator-

Key Combining Operators in the Flux Class
« The collectList() operator Mono<List<T>> collectList()

» Collect all elements emitted
by this Flux into a List

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Hux.html#collectList

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collectList--

Key Combining Operators in the Flux Class

» The collectList() operator

» Collect all elements emitted
by this Flux into a List

« Returns a Mono to a List
containing all values from
this Flux

Mono<List<T>> collectList()

Class Mono<T>

java.lang.Object

reactor.core.publisher.Mono<T=>

Type Parameters:

T - the type of the single value of this class

All Implemented Interfaces:

Publisher<T=>, <T>

Direct Known Subclasses:

public abstract class Mono<T>
extends Object
implements <T>

A Reactive Streams Publisher with basic rx operators that completes successfully by

emitting an element, or with an error.

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html

Key Combining Operators in the Flux Class

« The collectList() operator W | >
l

Y VYV OV vV ¥
» The list is emitted by the Mono collectList
when this sequence completes

v v
F:I-I:u;‘:fromlterable @ O O .D_I_>

(bigFractions)
.flatMap(...)
.filter (fraction -> fraction.compareTo(0) > 0)
.collectList ()

\ Collect the filtered BigFractions into a list

See Reactive/flux/ex3/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

Key Combining Operators in the Flux Class

» The collectList() operator 4—0‘0‘00'000 } >

subscribe()

| I | | |
v v v v v

v v
i~)
collect (Collector : QO-»)
-

* RxJava’s Observable.collect() is :
a generalization of collectlist() :
Observable a /@9C[[[III)/Q

.fromIterable (bigFractions)

.flatMap(...)

.filter (fraction -> fraction.compareTo(0) > 0)
.collect(toList())

1 Collect the filtered BigFractions into a list

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collect

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collect-java.util.stream.Collector-

Key Combining Operators in the Flux Class

» The collectList() operator

« Similar to the Stream.collect()
method in Java Streams

Collect even #d
Integers into a List

collect

used as arguments to collect(Supplier,

partitioning.

<R,A> R collect(Collector<? super T,A,R> collector)

Performs a mutable reduction operation on the elements of this
stream using a Collector. A Collector encapsulates the functions

BiConsumer,

BiConsumer), allowing for reuse of collection strategies and
composition of collect operations such as multiple-level grouping or

List<Integer> evenNumbers = List

.0of(1, 2, 2, 3, 4,

.stream|()

filter(x -> x % 2
_— .collect(toList())

5, 6, 6)

== 0)

7

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.function.Supplier-java.util.function.BiConsumer-java.util.function.BiConsumer-

Key Combining Operators in the Flux Class
» The collect() operator <R, A> Mono<R> collect

- Collector<? super T,
« Collect all elements emitted by (up

. i . A,
this Flux into a container ? extends R> collector)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#collect-java.util.stream.Collector-

Key Combining Operators in the Flux Class

» The collect() operator <R, A> Mono<R> collect
. Collector<? super T,
. Collect all elements emitted by ¢ . F
this Flux into a container > extends R> collector)

* The param is the Java Stream
Collector interface

Interface Collector<T,A,R>

Type Parameters:

¢ Thls |nterface deﬁnes the T - the type of input elements to the reduction operation
A - the mutable accumulation e of the reduction operation
Suppller()’ accumUIator()’ (oft;n hidzen as an implZment;}c(Fi)on deiail) ’ peret
Comblner()l & fInISher() R - the result type of the reduction operation
methods

public interface Collector<T,A,R>

A mutable reduction operation that accumulates input elements into a
mutable result container, optionally transforming the accumulated
result into a final representation after all input elements have been
processed. Reduction operations can be performed either
sequentially or in parallel.

See docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Collector.html?is-external=true

Key Combining Operators in the Flux Class
» The collect() operator <R, A> Mono<R> collect

. Collector<? super T,
. Collect all elements emitted by ¢ P

. i . A,
this Flux into a container ? extends R> collector)

» The collected result is emitted
via @ Mono when this sequence
completes

29

Key Combining Operators in the Flux Class

» The collect() operator I
—) -) | >

 Can be used to seamlessly L F
integrate Project Reactor & \ AA NS A5 |
Java Streams capabilities

return monos -> Mono
.when (monos)

.materialize () @OO) ‘ >
.flatMap (v -> Flux \

.fromIterable (monos) -
.map (Mono: :block) Return a Mono to a List

.collect (toList())) ; of results that were
computed asynchronously

colle'ct(Collector)

See Reactive/flux/ex3/src/main/java/utils/MonosCollector.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/utils/MonosCollector.java

Key Combining Operators in the Flux Class

» The collect() operator W } R

subscribe()

i i i I
v v v v

Vv v v
1~)
collect (Collector { , O-»)
@@~ /TO/
 RxJava’s operator Observable. :4 '
collect() works the same /v Q3330 A

Observable
.fromIterable (bigFractions)
.flatMap(...)
.filter (fraction -> fraction.compareTo(0) > 0)
.collect(toList()) — |

Collect the filtered BigFractions into a list

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collect

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#collect-java.util.stream.Collector-

Key Combining Operators in the Flux Class

» The collect() operator

« Similar to the Stream.collect()

method in Java Streams

collect

partitioning.

<R,A> R collect(Collector<? super T,A,R> collector)

Performs a mutable reduction operation on the elements of this
stream using a Collector. A Collector encapsulates the functions
used as arguments to collect(Supplier, BiConsumer,
BiConsumer), allowing for reuse of collection strategies and
composition of collect operations such as multiple-level grouping or

Set<Integer> evenNumbers
.of(1, 2, 2, 3, 4, 4,
.stream()
.filter(x -> x % 2
.collect (toSet());

/

Collect even #d Integers into a Set

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#collect-java.util.function.Supplier-java.util.function.BiConsumer-java.util.function.BiConsumer-

End of Key Combining
Operators in the Flux Class
(Part 2)

33

