
Key Transforming Operators

in the Flux Class (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators

• Factory method operators

• Transforming operators

• Transform the values and/or
types emitted by a Flux

• e.g., flatMap()

3

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators

• Factory method operators

• Transforming operators

• Transform the values and/or
types emitted by a Flux

• e.g., flatMap()

This lesson also describes the Project Reactor flatMap() concurrency idiom

return Flux

.fromCallable(() -> BigFraction

.reduce(unreducedFraction))

.subscribeOn(scheduler)

.flatMap(reducedFraction ->

Flux

.fromCallable(() ->

reducedFraction

.multiply

(sBigReducedFrac))

.subscribeOn

(scheduler));

4

Key Transforming Operators
in the Flux Class

5

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

Key Transforming Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#flatMap

<R> Flux<R> flatMap

(Function<? super T,

? extends Publisher<?

extends R>>

mapper)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#flatMap-java.util.function.Function-

6

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• These elements are emitted into
inner Publishers

Key Transforming Operators in the Flux Class
<R> Flux<R> flatMap

(Function<? super T,

? extends Publisher<?

extends R>>

mapper)

7

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• These elements are emitted into
inner Publishers

• Each <T> input element is
mapped to a Publisher<R>

Key Transforming Operators in the Flux Class
<R> Flux<R> flatMap

(Function<? super T,

? extends Publisher<?

extends R>>

mapper)

8

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• These elements are emitted into
inner Publishers

• Each <T> input element is
mapped to a Publisher<R>

• That publisher will emit one
or more items

Key Transforming Operators in the Flux Class

9

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• These elements are emitted into
inner Publishers

• These inner publishers are then
flattened into one Flux by merging

Key Transforming Operators in the Flux Class
<R> Flux<R> flatMap

(Function<? super T,

? extends Publisher<?

extends R>>

mapper)

10

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• These elements are emitted into
inner Publishers

• These inner publishers are then
flattened into one Flux by merging

• They thus can interleave

• Especially when used for
concurrent processing

Key Transforming Operators in the Flux Class

See upcoming walkthrough of the “flatMap() concurrency idiom” example

11

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• These elements are emitted into
inner Publishers

• These inner publishers are then
flattened into one Flux by merging

• They thus can interleave

Key Transforming Operators in the Flux Class

The # of output elements may
differ from the # of input elements

12

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• These elements are emitted into
inner Publishers

• These inner publishers are then
flattened into one Flux by merging

• They thus can interleave

Key Transforming Operators in the Flux Class

flatMap() can transform the values
and/or type of elements it processes

13

• The flatMap() operator

• Transform the elements emitted
by this Observable asynchronously

• This method is often used to
trigger concurrent processing

Key Transforming Operators in the Flux Class

See upcoming discussion on the Project Reactor flatMap() concurrency idiom

return Flux

.fromCallable(() -> BigFraction

.reduce(unreducedFraction))

.subscribeOn(scheduler)

.flatMap(reducedFraction ->

Flux

.fromCallable(() ->

reducedFraction

.multiply

(sBigReducedFrac))

.subscribeOn

(scheduler));

14

• The flatMap() operator

• Transform the elements emitted
by this Observable asynchronously

• This method is often used to
trigger concurrent processing

Key Transforming Operators in the Flux Class

See Reactive/flux/ex3/src/main/java/FluxEx.java

return Flux

.fromCallable(() -> BigFraction

.reduce(unreducedFraction))

.subscribeOn(scheduler)

.flatMap(reducedFraction ->

Flux

.fromCallable(() ->

reducedFraction

.multiply

(sBigReducedFrac))

.subscribeOn

(scheduler));

Return a Flux to a multiplied big
fraction using the Project Reactor

flatMap() concurrency idiom

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex3/src/main/java/FluxEx.java

15

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• This method is often used to
trigger concurrent processing

• RxJava’s Observable.flatMap()
method works the same way

Key Transforming Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMap

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#flatMap-io.reactivex.rxjava3.functions.Function-

16

• The flatMap() operator

• Transform the elements emitted
by this Flux asynchronously

• This method is often used to
trigger concurrent processing

• RxJava’s Observable.flatMap()
method works the same way

• Similar to the Java Streams
flatMap() operator

Key Transforming Operators in the Flux Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#flatMap

List<String> a = List.of("d", "g");

List<String> b = List.of("a", "c");

Stream

.of(a, b)

.flatMap(List::stream)

.sorted()

.forEach(System.out::println);

Flatten, sort, & print
two lists of strings

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#flatMap-java.util.function.Function-

17

• flatMap() doesn’t guarantee the order of
the items in the resulting stream

Key Transforming Operators in the Flux Class

18

• flatMap() doesn’t guarantee the order of
the items in the resulting stream

• use concatMap() if order matters

Key Transforming Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#concatMap

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#concatMap-java.util.function.Function-

19

The Project Reactor
flatMap() Concurrency Idiom

20

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

The Project Reactor flatMap() Concurrency Idiom
return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

21

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

• This structure is known as the
“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom

See ebaytech.berlin/declarative-concurrency-with-reactor-70507e04054a

return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

https://ebaytech.berlin/declarative-concurrency-with-reactor-70507e04054a

22

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

• This structure is known as the
“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

Create a Flux BigFraction
stream from a BigFraction list

23

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

• This structure is known as the
“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

Iterate thru the Flux stream multiplying
big fractions in the parallel thread pool

See Reactive/flux/ex3/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/flux/ex3/src/main/java/FluxEx.java

24

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

• This structure is known as the
“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

Each BigFraction in the stream is processed
concurrently in the parallel thread pool

25

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

• This structure is known as the
“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

Emit each BigFraction
in the “inner publisher”

26

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

• This structure is known as the
“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

Arrange to process each emitted
BigFraction in the parallel thread pool

27

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

• This structure is known as the
“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

Multiply each BigFraction in a
thread from the parallel thread pool

28

• flatMap()’s often used when each
item emitted by a stream needs to
apply its own threading operators

• This structure is known as the
“flatMap() concurrency idiom”

The Project Reactor flatMap() Concurrency Idiom
return Flux

.fromIterable(bigFractions)

.flatMap(bf -> Mono

.fromCallable(() -> bf)

.subscribeOn

(Schedulers

.parallel())

.map(multiplyBigFracs))

.reduce(BigFraction::add)

...

After all the concurrent processing
completes then add all the Big

Fractions to compute the final sum

29

Comparing map & flatMap()

30

• The map() vs. flatMap() operators

Comparing map() & flatMap()

31

• The map() vs. flatMap() operators

• The map() operator transforms each
value in a Flux stream into a single
value

• i.e., intended for synchronous, non-
blocking, 1-to-1 transformations

Comparing map() & flatMap()

See stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor

https://stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor/

32

• The map() vs. flatMap() operators

• The map() operator transforms each
value in a Flux stream into a single
value

• The flatMap() operator transforms each
value in a Flux stream into an arbitrary
number (zero or more) values

• i.e., intended for asynchronous (often
non-blocking) 1-to-N transformations

Comparing map() & flatMap()

See stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor

https://stackoverflow.com/questions/49115135/map-vs-flatmap-in-reactor/

33

End of Key Transforming
Operators in the Flux Class

(Part 2)

