
Key Factory Method Operators

in the Flux Class (Part 3)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators

• Factory method operators

• These operators create
Flux streams in various
ways

• e.g., generate()

See en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

3

Key Factory Method
Operators in the Flux Class

4

• The generate() operator

• Create a Flux by generating
signals 1-by-1 via a callback

Key Factory Method Operators in the Flux Class
static <T> Flux<T> generate

(Consumer<SynchronousSink<T>>

generator)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#generate

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#generate-java.util.function.Consumer-

5

• The generate() operator

• Create a Flux by generating
signals 1-by-1 via a callback

• The param is called in a loop
after a downstream Subscriber
has subscribed

• The callback should call next(),
error(), or complete() to signal
a value or a terminal event

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/SynchronousSink.html

static <T> Flux<T> generate

(Consumer<SynchronousSink<T>>

generator)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/SynchronousSink.html

6

• The generate() operator

• Create a Flux by generating
signals 1-by-1 via a callback

• The param is called in a loop
after a downstream Subscriber
has subscribed

• The new Flux instance is returned

Key Factory Method Operators in the Flux Class
static <T> Flux<T> generate

(Consumer<SynchronousSink<T>>

generator)

7

• The generate() operator

• Create a Flux by generating
signals 1-by-1 via a callback

• It is only allowed to generate
one event at a time, which
supports backpressure

Key Factory Method Operators in the Flux Class

See www.java-allandsundry.com/2020/07/backpressure-in-project-reactor.html

Flux

.generate((SynchronousSink<BigFraction> sink) -> sink

.next(BigFractionUtils

.makeBigFraction(sRANDOM,

false)))

...

http://www.java-allandsundry.com/2020/07/backpressure-in-project-reactor.html

8

• The generate() operator

• Create a Flux by generating
signals 1-by-1 via a callback

• It is only allowed to generate
one event at a time, which
supports backpressure

Key Factory Method Operators in the Flux Class

See www.java-allandsundry.com/2020/07/backpressure-in-project-reactor.html

Flux

.generate((SynchronousSink<BigFraction> sink) -> sink

.next(BigFractionUtils

.makeBigFraction(sRANDOM,

false)))

... Generate a stream of random
unreduced big fractions

http://www.java-allandsundry.com/2020/07/backpressure-in-project-reactor.html

9

• The generate() operator

• Create a Flux by generating
signals 1-by-1 via a callback

• It is only allowed to generate
one event at a time, which
supports backpressure

• In contrast, create() simply
produces events whenever
it wishes to do so

• i.e., it ignores backpressure

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create-java.util.function.Consumer-

10

• The generate() operator

• Create a Flux by generating
signals 1-by-1 via a callback

• It is only allowed to generate
one event at a time, which
supports backpressure

• RxJava’s Observable.generate()
works in a similar way

Key Factory Method Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#generate

Observable

.generate((Emitter<BigFraction> emit) -> emit

.onNext(BigFractionUtils

.makeBigFraction(sRANDOM,

false))) ...
Generate a stream of random,

large, & unreduced big fractions

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#generate-io.reactivex.rxjava3.functions.Consumer-

11See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate

• The generate() operator

• Create a Flux by generating
signals 1-by-1 via a callback

• It is only allowed to generate
one event at a time, which
supports backpressure

• RxJava’s Observable.generate()
works the same

• Similar to Stream.generate()
in Java Streams

Key Factory Method Operators in the Flux Class

Stream

.generate(() -> BigFractionUtils

.makeBigFraction(new Random(),

false))

Generate a stream of random,
large, & unreduced big fractions

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate-java.util.function.Supplier-

12

End of Key Factory Method
Operators in the Flux Class

(Part 3)

