
Key Factory Method Operators

in the Flux Class (Part 2)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators

• Concurrency & scheduler operators

• Factory method operators

• These operators create
Flux streams in various
ways

• e.g., create(), range(),
& interval()

See en.wikipedia.org/wiki/Factory_method_pattern

https://en.wikipedia.org/wiki/Factory_method_pattern

3

Key Factory Method
Operators in the Flux Class

4

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

Key Factory Method Operators in the Flux Class
static <T> Flux<T> create

(Consumer<? super FluxSink<T>>

emitter)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#create-java.util.function.Consumer-

5

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

• The param emits any # of next()
signals followed by zero or one
error() or complete() signals

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.html

static <T> Flux<T> create

(Consumer<? super FluxSink<T>>

emitter)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/FluxSink.html

6

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

• The param emits any # of next()
signals followed by zero or one
error() or complete() signals

• Supports more dynamic use
cases than the Flux just() &
fromIterable() operators

Key Factory Method Operators in the Flux Class
static <T> Flux<T> create

(Consumer<? super FluxSink<T>>

emitter)

See earlier lesson on “Key Factory Method Operators in the Flux Class (Part 1)”

7

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

• The param emits any # of next()
signals followed by zero or one
error() or complete() signals

• Returns a Flux that emits all the
elements generated by the
FluxSink

Key Factory Method Operators in the Flux Class
static <T> Flux<T> create

(Consumer<? super FluxSink<T>>

emitter)

8

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

Key Factory Method Operators in the Flux Class

See Reactive/Flux/ex1/src/main/java/utils/ReactorUtils.java

static <T> Flux<T> generate

(Supplier<T> supplier,

long count) {

return Flux.create(sink -> {

for(int i = 0; i < count; ++i)

sink.next(supplier.get()));

sink.complete();

});

} Synchronously generate ‘count’ instances of what’s returned by supplier.get()

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flux/ex1/src/main/java/utils/ReactorUtils.java

9

Key Factory Method Operators in the Flux Class

Generate the next element & emit it

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

static <T> Flux<T> generate

(Supplier<T> supplier,

long count) {

return Flux.create(sink -> {

for(int i = 0; i < count; ++i)

sink.next(supplier.get()));

sink.complete();

});

}

10

Key Factory Method Operators in the Flux Class

Indicate the generator is finished

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

static <T> Flux<T> generate

(Supplier<T> supplier,

long count) {

return Flux.create(sink -> {

for(int i = 0; i < count; ++i)

sink.next(supplier.get()));

sink.complete();

});

}

11

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

• Elements can be emitted from
one or more threads

Key Factory Method Operators in the Flux Class

12

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

• Elements can be emitted from
one or more threads

• RxJava’s Flowable.create() works
in a similar way

• However, the data types passed
to create() differ

Key Factory Method Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#create

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Flowable.html#create-io.reactivex.rxjava3.core.FlowableOnSubscribe-io.reactivex.rxjava3.core.BackpressureStrategy-

13

• The create() operator

• Create a Flux capable of emitting
multiple elements synchronously
or asynchronously

• Elements can be emitted from
one or more threads

• RxJava’s Flowable.create() works
in a similar way

• Similar to the generate() method
in Java Streams

Key Factory Method Operators in the Flux Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate

Stream.generate(() -> BigFractionUtils

.makeBigFraction(new Random(),

false))
Generate a stream of random,

large, & unreduced big fractions

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#generate-java.util.function.Supplier-

14

• The interval() operator

• Create a Flux that emits long
values starting with zero (0)

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#interval

static Flux<Long> interval

(Duration period)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#interval-java.time.Duration-

15

• The interval() operator

• Create a Flux that emits long
values starting with zero (0)

• The param indicates when
to increment a value at the
specified time interval

Key Factory Method Operators in the Flux Class

See docs.oracle.com/javase/8/docs/api/java/time/Duration.html

static Flux<Long> interval

(Duration period)

https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html

16

• The interval() operator

• Create a Flux that emits long
values starting with zero (0)

• The param indicates when
to increment a value at the
specified time interval

• Returns a new Flux emitting
increasing #’s at regular
intervals

Key Factory Method Operators in the Flux Class
static Flux<Long> interval

(Duration period)

17

• The interval() operator

• Create a Flux that emits long
values starting with zero (0)

• Emits values on the Schedulers
.parallel() Scheduler

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel--

18

• The interval() operator

• Create a Flux that emits long
values starting with zero (0)

• Emits values on the Schedulers
.parallel() Scheduler

• Other overloaded interval()
methods can designate the
Scheduler

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

19

• The interval() operator

• Create a Flux that emits long
values starting with zero (0)

• Emits values on the Schedulers
.parallel() Scheduler

• In normal conditions, the
Flux will never complete

Key Factory Method Operators in the Flux Class

Generate a stream of longs every .5 seconds in a background thread

See Reactive/Flux/ex2/src/main/java/FluxEx.java

...

Flux

.interval(Duration.ofMillis(500))

...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flux/ex2/src/main/java/FluxEx.java

20

• The interval() operator

• Create a Flux that emits long
values starting with zero (0)

• Emits values on the Schedulers
.parallel() Scheduler

• In normal conditions, the
Flux will never complete

Key Factory Method Operators in the Flux Class

...

Flux

.interval(Duration.ofMillis(500))

...

.take(sMAX_ITERATIONS)

...

See upcoming discussion of the Flux.take() method

Use take() to only process
sMAX_ITERATIONS # of

emitted values from interval()

21

• The interval() operator

• Create a Flux that emits long
values starting with zero (0)

• Emits values on the Schedulers
.parallel() Scheduler

• In normal conditions, the
Flux will never complete

• RxJava’s Observable.interval()
works the same

Key Factory Method Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#interval

Observable

.interval(sSLEEP_DURATION)

...

.take(sMAX_ITERATIONS)

...

Use take() to only process
sMAX_ITERATIONS # of

emitted values from interval()

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#interval-long-java.util.concurrent.TimeUnit-

22

• The range() operator

• Build a Flux that will only emit a
sequence of ‘count’ incrementing
integers, starting from ‘start’

Key Factory Method Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#range

static Flux<Integer> range

(int start, int count)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#range-int-int-

23

• The range() operator

• Build a Flux that will only emit a
sequence of ‘count’ incrementing
integers, starting from ‘start’

• Emits integers between `start’ &
`start + count’ & then completes

Key Factory Method Operators in the Flux Class
static Flux<Integer> range

(int start, int count)

24

• The range() operator

• Build a Flux that will only emit a
sequence of ‘count’ incrementing
integers, starting from ‘start’

• Emits integers between `start’ &
`start + count’ & then completes

Key Factory Method Operators in the Flux Class
static Flux<Integer> range

(int start, int count)

25

• The range() operator

• Build a Flux that will only emit a
sequence of ‘count’ incrementing
integers, starting from ‘start’

• Emits integers between `start’ &
`start + count’ & then completes

• Returns a “ranged” Flux containing
count elements

Key Factory Method Operators in the Flux Class
static Flux<Integer> range

(int start, int count)

26

• The range() operator

• Build a Flux that will only emit a
sequence of ‘count’ incrementing
integers, starting from ‘start’

• Works much like a “reactive”
for loop

Key Factory Method Operators in the Flux Class

Emit sMAX_ITERATIONS
integers starting at 1

See Reactive/Flux/ex2/src/main/java/FluxEx.java

final int sMAX_ITERATIONS = 10;

...

Flux

.range(1, sMAX_ITERATIONS)

...

https://github.com/douglascraigschmidt/LiveLessons/tree/master/Reactive/Flux/ex2/src/main/java/FluxEx.java

27

• The range() operator

• Build a Flux that will only emit a
sequence of ‘count’ incrementing
integers, starting from ‘start’

• Works much like a “reactive”
for loop

• RxJava’s Observable.range() works
the same

Key Factory Method Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#range

Emit sMAX_ITERATIONS
integers starting at 1

final int sMAX_ITERATIONS = 10;

...

Observable

.range(1, sMAX_ITERATIONS)

...

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#range-int-int-

28

• The range() operator

• Build a Flux that will only emit a
sequence of ‘count’ incrementing
integers, starting from ‘start’

• Works much like a “reactive”
for loop

• RxJava’s Observable.range() works
the same

• Similar to IntStream.rangeClosed()
in Java Streams

Key Factory Method Operators in the Flux Class

See docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html#rangeClosed

Emit sMAX_ITERATIONS
integers starting at 1

IntStream.rangeClosed

(1, sMAX_ITERATIONS)

...

https://docs.oracle.com/javase/8/docs/api/java/util/stream/IntStream.html#rangeClosed-int-int-

29

End of Key Factory Method
Operators in the Flux Class

(Part 2)

