Key Concurrency & Scheduler

Operators in the Flux Glass (Part 1)

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

» Recognize key Flux operators
« Concurrency & scheduler operators

« These operators arrange to run
other operators in designated
threads & thread pools

* e.g., subscribeOn(), publishOn(),

4 pool of worker threa®”
& Schedulers.newParallel() ;

Key Concurrency Operators
In the Flux Class

Key Concurrency Operators in the Flux Class
« The subscribeOn() operator Flux<T> subscribeOn

- Run subscribe(), onSubscribe(), (Scheduler scheduler)
& request() on the specified
Scheduler param

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Fux.html#subscribeOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#subscribeOn-reactor.core.scheduler.Scheduler-

Key Concurrency Operators in the Flux Class

« The subscribeOn() operator Flux<T> subscribeOn
: : Schedul hedul
« Run subscribe(), onSubscribe(), (Scheduler scheduler)
& request() on the specified Interface Scheduler

Scheduler param

» The scheduler param indicates
what thread to perform the
Operatlon On public interface Scheduler

extends

All Superinterfaces:

Provides an abstract asynchronous boundary
to operators.

Implementations that use an underlying
ExecutorService or
ScheduledExecutorService should decorate
it with the relevant hook

(

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

Key Concurrency Operators in the Flux Class

« The subscribeOn() operator Flux<T> subscribeOn

+ Run subscribe(), onSubscribe(), (Scheduler scheduler)
& request() on the specified
Scheduler param

« Returns the Flux requesting
async processing

Key Concurrency Operators in the Flux Class

» The subscribeOn() operator

» The subscribeOn() semantics
are a bit unusual

Ly v oy
subscribeOn (’)
S
iy v Y

Key Concurrency Operators in the Flux Class

« The subscribeOn() operator Scheduler publisher = Schedulers
.newParallel ("publisher", 1)) ;

Flux
.range (1, sMAX ITERATIONS)
.subscribeOn (publisher)
.map(___ -> BigInteger
.valueOf (lowerBound + rand
.nextInt (sMAX ITERATIONS)))

* The subscribeOn() semantics
are a bit unusual

* Placing this operator in a chain
impacts the execution context
of onNext(), onError(), &
onComplete() signals

.doFinally(() -> publisher
.displose())
.subscribe (sink: :next,
err -> sink
.complete(),
sink: :complete) ;

See Reactive/flux/ex2/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

Key Concurrency Operators in the Flux Class

« The subscribeOn() operator Scheduler publisher = Schedulers
.newParallel ("publisher", 1)) ;

Flux
.range (1, sMAX ITERATIONS)
.map(___ -> BigInteger
.valueOf (lowerBound + rand
.nextInt (sMAX ITERATIONS)))

* The subscribeOn() semantics
are a bit unusual

* Placing this operator in a chain
impacts the execution context
of onNext(), onError(), &
onComplete() signals

.doFinally(() -> publisher
.displose())

-subscribeOn (publisher)

.subscribe (sink: :next,

)) err -> sink
subscribeOn() can appear later in .complete (),
the chain & have the same effect sink: :complete) ;

9

Key Concurrency Operators in the Flux Class

» The subscribeOn() operator C C C I

\ S N 2.
publishOn (')

* The subscribeOn() semantics
are a bit unusual

 Placing this operator in a chain : : : :
impacts the execution context v V \ v

of onNext(), onError(), &
onComplete() signals () () () ‘ >
« However, if a publishOn() operator appears later in the chain that

can change the threading context where the rest of the operators in
the chain below it execute (publishOn() can appear multiple times)

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html# publishOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#publishOn-reactor.core.scheduler.Scheduler-

Key Concurrency Operators in the Flux Class

» The subscribeOn() operator Q O O O e Q | -

subscribeOn(D)

« RxJava’s Observable. 0 O O O e Q —

subscribeOn() works the
same way

See readiivex.io/RxJava/3.x/javadoc/io/reactivex/njava3/core/Observable.html#subscribeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#subscribeOn-io.reactivex.rxjava3.core.Scheduler-

Key Concurrency Operators in the Flux Class
« The publishOn() operator Flux<T> publishOn

- Run onNext(), onComplete(), & (Scheduler scheduler)
onError() on a supplied Scheduler
param

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#publishOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#publishOn-reactor.core.scheduler.Scheduler-

Key Concurrency Operators in the Flux Class

« The publishOn() operator Flux<T> publishOn
« Run onNext(), onComplete(), & (Scheduler scheduler)
onError() on a supplied Scheduler Interface Scheduler
param

All Superinterfaces:

» The scheduler param indicates
what thread to perform the
Operatlon On public interface Scheduler

extends

Provides an abstract asynchronous boundary
to operators.

Implementations that use an underlying
ExecutorService or
ScheduledExecutorService should decorate
it with the relevant hook

(

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

Key Concurrency Operators in the Flux Class

« The publishOn() operator Flux<T> publishOn

- Run onNext(), onComplete(), & (Scheduler scheduler)
onError() on a supplied Scheduler
param

« Returns the Flux requesting
async processing

14

Key Concurrency Operators in the Flux Class

« The publishOn() operator . : : l

v 4 \ A |
» The publishOn() semantics publishon ([)
are fairly straightforward ; . ;

15

Key Concurrency Operators in the Flux Class

« The publishOn() operator Scheduler subscriber = Schedulers
.newParallel ("subscriber",

1))

return Flux
.create (makeAsyncFluxSink (sb))
* The publishOn() semantics .publishOn (subscriber)
are fairly straightforward -map (bigInteger -> FluxEx

: . .checkIfPrime (bigInteger,
« It influences the threading (big g

sb))
context Where the re_st of the .doOnNext (bigInteger -> FluxEx
operators in the chain below

.processResult (bigInteger,
it execute sb))
.doFinally (->

subscriber.dispose())

See Reactive/flux/ex2/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

Key Concurrency Operators in the Flux Class

« The publishOn() operator Scheduler subscriber = Schedulers
.newParallel ("subscriber",

2));

return Flux
.create (makeAsyncFluxSink (sb))

» The publishOn() semantics .publishOn (subscriber)
are fairly straightforward -map (bigInteger -> FluxEx

.checkIfPri bigInt ,
- It influences the threading checkltfrrime (skl)‘)l ! nteger
context where the rest of the

_ _ .publishOn (subscriber)
operators in the chain below .doOnNext (bigInteger -> FluxEx
it execute

-Pr°ceSSReSU1t(bigInteger,
« Up to any new occurrence | ." /) -
of publishOn() (if any) y Sl

'y

Beware of publishing on too many different threads!

Key Concurrency Operators in the Flux Class

» The publishOn() operator

» The publishOn() semantics
are fairly straightforward

- Interactions between publishOn() e
& subscribeOn() are convoluted..

’ <
. X 4
. - . =\ -
* s
| e R
g
] e
’
; .
\ 2
A |
4 ¥~
J
”~

N

!
\ .- _’\
7 :
—— / \
NN ~ N »
4 e N \ »
. — -
-~ o
4 '

See www.woolha.com/tutorials/

project-reactor-

hublishon-vs-subscribeon-difference

http://www.woolha.com/tutorials/project-reactor-publishon-vs-subscribeon-difference

Key Concurrency Operators in the Flux Class
« The publishOn() operator W
Y V V V V VY
observeOn(D)

« RxJava’s Observable.observeOn() O O O O 0 Q |

operator works the same

\\'

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn-io.reactivex.rxjava3.core.Scheduler-

Key Concurrency Operators in the Flux Class

« The publishOn() operator W
Y V V V V VY
observeOn(D)

« RxJava’s Observable.observeOn() O O O O 0 Q —

operator works the same

« Why RxJava & Project Reactor -
chose different names for this [
operator is a mystery.. il

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn-io.reactivex.rxjava3.core.Scheduler-

Key Scheduler Operators
Used By the Flux Class

21

Key Scheduler Operators Used By the Flux Class

e The Schedu|ers_newpara||e|() static Scheduler newParallel

operator (String name,
int parallelism)

« Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

See projedreadtorio/docs/core/release/api/reactor/core/scheduler/Schedulers.html#newParallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#newParallel-java.lang.String-int-

Key Scheduler Operators Used By the Flux Class

e The Schedu|ers_newpara||e|() static Scheduler newParallel
operator (String name,

int llelj
« Hosts a fixed-sized pool of single- int paralielism)
threaded ExecutorService-based
workers
« The params (1) give a name for

the scheduler & (2) indicate the
of pooled worker threads

23

Key Scheduler Operators Used By the Flux Class

e The Schedu|ers_newpara||e|() static Scheduler newParallel

! .) int parallelism)
« Hosts a fixed-sized pool of single-

threaded ExecutorService-based
workers

« Returns a new Scheduler suitable
for parallel computations

24

Key Scheduler Operators

Jsed By the Flux Class

» The Schedulers.newParallel()
operator

« Hosts a fixed-sized pool of single-
threaded ExecutorService-based

workers

e Returns a new Scheduler suitable

for parallel computations

« However, it detects &
rejects use of blocking
Reactor APIs

Class Schedulers

java.lang.Object

reactor.core.scheduler.Schedulers

public abstract class Schedulers
extends Object

provides various flavors usable by or

: Optimized for fast Runnable non-blocking executions
: Optimized for low-latency Runnable one-off executions
: Optimized for longer executions, an alternative for
blocking tasks where the number of active tasks (and threads) can
grow indefinitely

blocking tasks where the number of active tasks (and threads) is
capped

: to immediately run submitted Runnable instead of
scheduling them (somewhat of a no-op or "null object"

: Optimized for longer executions, an alternative for

)

to create new instances

around Executors

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

Key Scheduler Operators Used By the Flux Class

» The Schedulers.newParallel() Scheduler publisher = Schedulers
operator .newParallel ("publisher", 1)) ;
Flux

.range (1, sMAX ITERATIONS)

.map (Integer: : toUnsignedLong)

.subscribeOn (publisher)

.map (sGenerateRandomBigInt)

.filter (sOnlyOdd)

.doFinally(() -> publisher
.dispose())

Arrange to emit the random big .subscribe (sink: :next,

integers in the "publisher” thread error ->
sink.complete(),

sink: :complete) ;

e Can be used to create a custom
parallel scheduler

See Reactive/flux/ex2/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

Key Scheduler Operators Used By the Flux Class

» The Schedulers.newParallel()
operator

e Can be used to create a custom
parallel scheduler

* Not implemented via a "daemon
thread”

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

Key Scheduler Operators Used By the Flux Class

» The Schedulers.newParallel() Scheduler publisher = Schedulers
operator .newParallel ("publisher", 1)) ;
Flux

.range (1, sMAX ITERATIONS)
.map (Integer: : toUnsignedLong)
.subscribeOn (publisher)

e Can be used to create a custom .map (sGenerateRandomBigInt)

parallel scheduler -filter (sOnlyOdd)
.doFinally(() -> publisher

* Not implemented via a “"daemon .dispose())

thread” .subscribe (sink: :next,

* i.e., the app will not exit until error ->
this pool is disposed of ~sink.complete(),
properly & explicitly Sink::complete);

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulerhtml#dispose

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html#dispose--

Key Scheduler Operators Used By the Flux Class

» The Schedulers.newParallel()
operator

« RxJava’s Schedulers doesn’t have
an equivalent method

newParallel

public stg3

Juler newParallel(int parallS

ThreadFactor padFactory)

ixed initialize

Returns:

anew Sched pat hosts a fixed pool of single-thre utorService-

ited for parallel work

based workers 3

29

Key Scheduler Operators Used By the Flux Class

» The Schedulers.newParallel() from
Operator @NonNull

public static @NonNull Scheduler from(@NonNull
@NonNull Executor executor)

Wraps an Executor into a new Scheduler instance and delegates schedule() calls to it.

If the provided executor doesn't support any of the more specific standard Java executor
APIs, cancelling tasks scheduled by this scheduler can't be interrupted when they are
executing but only prevented from running prior to that. In addition, tasks scheduled with a
time delay or periodically will use the single() scheduler for the timed waiting before

osting the actual task to the given executor.
sting the actual task to the given executor

Tasks submitted to the Scheduler.Worker of this Scheduler are also not interruptible. Use
the from(Executor, boolean) overload to enable task interruption via this wrapper.

If the provided executor supports the standard Java ExecutorService API, cancelling tasks

L4 RXJ ava ’s SC h Ed u Ie rs d Oesn ’t h ave scheduled by this scheduler can be cancelled/interrupted by calling

Disposable.dispose(). In addition, tasks scheduled with a time delay or periodically will

a n eq u iva Ie nt m ethOd use the single() scheduler for the timed waiting before posting the actual task to the given

executor.

° H Owever the fro m () m ethOd Ca n If the provided executor supports the standard Java ScheduledExecutorService API,
14

cancelling tasks scheduled by this scheduler can be cancelled/interrupted by calling

be u Sed i n CO nj u nction With Java ’S Disposable‘. dispose(). In addition, task..\'.m'hvdulc.d with a time delay or periodically will
use the provided executor. Note, however, if the provided ScheduledExecutorService

instance is not single threaded, tasks scheduled with a time delay close to each other may

Executor fra m eWO rk end up executing in different order than the original schedule() call was issued. This

limitation may be lifted in a future patch.

See readtivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#from

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#from-java.util.concurrent.Executor-

Key Scheduler Operators Used By the Flux Class

« The Schedulers.newParallel() Cached (Variable-sized)
Thread Pool

operator

\\\\\\\
<

.\\4 Pool of worker thfeadj .\:q
\‘\ - : /

Deque

i

Fixed-sized
Thread Pool

\\\\\

!

Pool of worker thre2%”
—— : /

<

ot

Deque

Deque

 RxJava’s Schedulers doesn’t have

Sub-Task, 5

Sub-Task; 5

an equivalent method
Work-stealing

« However, the from() method can Thread Pool
be used in conjunction with Java’s
Executor framework, e.qg.

¢ S
\\4 Pool of worker \‘.\‘“‘ead/.
— P

See docs.oracle.com/javase/tutorial/essential/concurrency/

nools.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

End of Key Concurrency
& Scheduler Operators
in the Flux Class (Part 1)

32

