
Key Concurrency & Scheduler

Operators in the Flux Class (Part 1)

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize key Flux operators

• Concurrency & scheduler operators

• These operators arrange to run
other operators in designated
threads & thread pools

• e.g., subscribeOn(), publishOn(),
& Schedulers.newParallel()

3

Key Concurrency Operators
in the Flux Class

4

• The subscribeOn() operator

• Run subscribe(), onSubscribe(),
& request() on the specified
Scheduler param

Key Concurrency Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#subscribeOn

Flux<T> subscribeOn

(Scheduler scheduler)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#subscribeOn-reactor.core.scheduler.Scheduler-

5

• The subscribeOn() operator

• Run subscribe(), onSubscribe(),
& request() on the specified
Scheduler param

• The scheduler param indicates
what thread to perform the
operation on

Key Concurrency Operators in the Flux Class
Flux<T> subscribeOn

(Scheduler scheduler)

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

6

• The subscribeOn() operator

• Run subscribe(), onSubscribe(),
& request() on the specified
Scheduler param

• The scheduler param indicates
what thread to perform the
operation on

• Returns the Flux requesting
async processing

Key Concurrency Operators in the Flux Class
Flux<T> subscribeOn

(Scheduler scheduler)

7

• The subscribeOn() operator

• Run subscribe(), onSubscribe(),
& request() on the specified
Scheduler param

• The subscribeOn() semantics
are a bit unusual

Key Concurrency Operators in the Flux Class

8

• The subscribeOn() operator

• Run subscribe(), onSubscribe(),
& request() on the specified
Scheduler param

• The subscribeOn() semantics
are a bit unusual

• Placing this operator in a chain
impacts the execution context
of onNext(), onError(), &
onComplete() signals

Key Concurrency Operators in the Flux Class

See Reactive/flux/ex2/src/main/java/FluxEx.java

Scheduler publisher = Schedulers

.newParallel("publisher", 1));

Flux

.range(1, sMAX_ITERATIONS)

.subscribeOn(publisher)

.map(__ -> BigInteger

.valueOf(lowerBound + rand

.nextInt(sMAX_ITERATIONS)))

...

.doFinally(() -> publisher

.displose())

.subscribe(sink::next,

err -> sink

.complete(),

sink::complete);

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

9

• The subscribeOn() operator

• Run subscribe(), onSubscribe(),
& request() on the specified
Scheduler param

• The subscribeOn() semantics
are a bit unusual

• Placing this operator in a chain
impacts the execution context
of onNext(), onError(), &
onComplete() signals

Key Concurrency Operators in the Flux Class
Scheduler publisher = Schedulers

.newParallel("publisher", 1));

Flux

.range(1, sMAX_ITERATIONS)

.map(__ -> BigInteger

.valueOf(lowerBound + rand

.nextInt(sMAX_ITERATIONS)))

...

.doFinally(() -> publisher

.displose())

.subscribeOn(publisher)

.subscribe(sink::next,

err -> sink

.complete(),

sink::complete);

subscribeOn() can appear later in
the chain & have the same effect

10

• The subscribeOn() operator

• Run subscribe(), onSubscribe(),
& request() on the specified
Scheduler param

• The subscribeOn() semantics
are a bit unusual

• Placing this operator in a chain
impacts the execution context
of onNext(), onError(), &
onComplete() signals

• However, if a publishOn() operator appears later in the chain that
can change the threading context where the rest of the operators in
the chain below it execute (publishOn() can appear multiple times)

Key Concurrency Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#publishOn

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#publishOn-reactor.core.scheduler.Scheduler-

11

• The subscribeOn() operator

• Run subscribe(), onSubscribe(),
& request() on the specified
Scheduler param

• The subscribeOn() semantics
are a bit unusual

• RxJava’s Observable.
subscribeOn() works the
same way

Key Concurrency Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#subscribeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#subscribeOn-io.reactivex.rxjava3.core.Scheduler-

12

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

Key Concurrency Operators in the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#publishOn

Flux<T> publishOn

(Scheduler scheduler)

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#publishOn-reactor.core.scheduler.Scheduler-

13

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

• The scheduler param indicates
what thread to perform the
operation on

Key Concurrency Operators in the Flux Class
Flux<T> publishOn

(Scheduler scheduler)

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html

14

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

• The scheduler param indicates
what thread to perform the
operation on

• Returns the Flux requesting
async processing

Key Concurrency Operators in the Flux Class
Flux<T> publishOn

(Scheduler scheduler)

15

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

• The publishOn() semantics
are fairly straightforward

Key Concurrency Operators in the Flux Class

16

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

• The publishOn() semantics
are fairly straightforward

• It influences the threading
context where the rest of the
operators in the chain below
it execute

Key Concurrency Operators in the Flux Class
Scheduler subscriber = Schedulers

.newParallel("subscriber",

1));

return Flux

.create(makeAsyncFluxSink(sb))

.publishOn(subscriber)

.map(bigInteger -> FluxEx

.checkIfPrime(bigInteger,

sb))

.doOnNext(bigInteger -> FluxEx

.processResult(bigInteger,

sb))

.doFinally(___ ->

subscriber.dispose())

...

See Reactive/flux/ex2/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

17

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

• The publishOn() semantics
are fairly straightforward

• It influences the threading
context where the rest of the
operators in the chain below
it execute

• Up to any new occurrence
of publishOn() (if any)

Key Concurrency Operators in the Flux Class

Beware of publishing on too many different threads!

Scheduler subscriber = Schedulers

.newParallel("subscriber",

2));

return Flux

.create(makeAsyncFluxSink(sb))

.publishOn(subscriber)

.map(bigInteger -> FluxEx

.checkIfPrime(bigInteger,

sb))

.publishOn(subscriber)

.doOnNext(bigInteger -> FluxEx

.processResult(bigInteger,

sb))

...

18

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

• The publishOn() semantics
are fairly straightforward

• It influences the threading
context where the rest of the
operators in the chain below
it execute

• Interactions between publishOn()
& subscribeOn() are convoluted..

Key Concurrency Operators in the Flux Class

See www.woolha.com/tutorials/project-reactor-publishon-vs-subscribeon-difference

http://www.woolha.com/tutorials/project-reactor-publishon-vs-subscribeon-difference

19

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

• The publishOn() semantics
are fairly straightforward

• RxJava’s Observable.observeOn()
operator works the same

Key Concurrency Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn-io.reactivex.rxjava3.core.Scheduler-

20

• The publishOn() operator

• Run onNext(), onComplete(), &
onError() on a supplied Scheduler
param

• The publishOn() semantics
are fairly straightforward

• RxJava’s Observable.observeOn()
operator works the same

• Why RxJava & Project Reactor
chose different names for this
operator is a mystery..

Key Concurrency Operators in the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#observeOn-io.reactivex.rxjava3.core.Scheduler-

21

Key Scheduler Operators
Used By the Flux Class

22

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

Key Scheduler Operators Used By the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#newParallel

static Scheduler newParallel

(String name,

int parallelism)

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#newParallel-java.lang.String-int-

23

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• The params (1) give a name for
the scheduler & (2) indicate the
of pooled worker threads

Key Scheduler Operators Used By the Flux Class
static Scheduler newParallel

(String name,

int parallelism)

24

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• The params (1) give a name for
the scheduler & (2) indicate the
of pooled worker threads

• Returns a new Scheduler suitable
for parallel computations

Key Scheduler Operators Used By the Flux Class
static Scheduler newParallel

(String name,

int parallelism)

25

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• The params (1) give a name for
the scheduler & (2) indicate the
of pooled worker threads

• Returns a new Scheduler suitable
for parallel computations

• However, it detects &
rejects use of blocking
Reactor APIs

Key Scheduler Operators Used By the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

26

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

Key Scheduler Operators Used By the Flux Class
Scheduler publisher = Schedulers

.newParallel("publisher", 1));

Flux

.range(1, sMAX_ITERATIONS)

.map(Integer::toUnsignedLong)

.subscribeOn(publisher)

.map(sGenerateRandomBigInt)

.filter(sOnlyOdd)

.doFinally(() -> publisher

.dispose())

.subscribe(sink::next,

error ->

sink.complete(),

sink::complete);

See Reactive/flux/ex2/src/main/java/FluxEx.java

Arrange to emit the random big
integers in the “publisher" thread

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex2/src/main/java/FluxEx.java

27

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• Not implemented via a “daemon
thread”

Key Scheduler Operators Used By the Flux Class

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

28

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• Not implemented via a “daemon
thread”

• i.e., the app will not exit until
this pool is disposed of
properly & explicitly

Key Scheduler Operators Used By the Flux Class

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html#dispose

Scheduler publisher = Schedulers

.newParallel("publisher", 1));

Flux

.range(1, sMAX_ITERATIONS)

.map(Integer::toUnsignedLong)

.subscribeOn(publisher)

.map(sGenerateRandomBigInt)

.filter(sOnlyOdd)

.doFinally(() -> publisher

.dispose())

.subscribe(sink::next,

error ->

sink.complete(),

sink::complete);

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Scheduler.html#dispose--

29

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• RxJava’s Schedulers doesn’t have
an equivalent method

Key Scheduler Operators Used By the Flux Class

30

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• RxJava’s Schedulers doesn’t have
an equivalent method

• However, the from() method can
be used in conjunction with Java’s
Executor framework

Key Scheduler Operators Used By the Flux Class

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#from

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#from-java.util.concurrent.Executor-

31

• The Schedulers.newParallel()
operator

• Hosts a fixed-sized pool of single-
threaded ExecutorService-based
workers

• Can be used to create a custom
parallel scheduler

• RxJava’s Schedulers doesn’t have
an equivalent method

• However, the from() method can
be used in conjunction with Java’s
Executor framework, e.g.

Key Scheduler Operators Used By the Flux Class

See docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

Cached (Variable-sized)

Thread Pool

Work-stealing

Thread Pool

Fixed-sized

Thread Pool

https://docs.oracle.com/javase/tutorial/essential/concurrency/pools.html

32

End of Key Concurrency
& Scheduler Operators

in the Flux Class (Part 1)

