Key Combining Operators

in the Flux Class (Part 1)

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in th|s Part of the Lesson
» Recognize key Flux operators et i =

« Combining operators

» These operators create a Flux
from multiple iterations or
sources

* e.g., repeat() & mergeWith()

Key Combining Operators
in the Flux Class

Key Combining Operators in the Flux Class
« The repeat() operator Flux<T> repeat (long numRepeat)

» Returns a Flux that repeats the
sequence of items emitted by the
given Flux numRepeat # of times

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#repeat

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#repeat-long-

Key Combining Operators in the Flux Class

 The repeat() operator Flux<T> repeat (long numRepeat)

» Returns a Flux that repeats the
sequence of items emitted by the
given Flux numRepeat # of times

 This results in numRepeat +
1 total subscriptions to the
original source

« As a consequence, using 0
plays the original sequence
once

Key Combining Operators in the Flux Class

« The repeat() operator Flux<T> repeat (long numRepeat)

» Returns a Flux that repeats the
sequence of items emitted by the
given Flux numRepeat # of times

« Returns a new Flux instance

Key Combining Operators in the Flux Class

 The repeat() operator _O_._._|_> _O_._._|_>

Y VvV VY v V VvV V

» This method does not operate by repeat(l).

default on a particular Scheduler

Flux.from
(Mono. fromCallable(() ->

Generate 4 random, reduced big fractions BigFractionUtils.
makeBigFraction
\\\\\\ (random, true)))
.repeat(3);

See Reactive/flux/ex1/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex1/src/main/java/FluxEx.java

Key Combining Operators in the Flux Class
* The repeat() operator

subscribel)
subscribel)

- ---
‘____

I]
I I
I I
I 1
A4 A4

- ---

I
I
I
1

A4

.‘____
‘____
Lo

F

repeat(2)

« RxJava’s Observable.repeat()
works the same

Observable
.fromCallable(() ->
Generate 4 random, reduced big fractions BigFractionUtils.

\\\\\\ makeBigFraction

(random, true))
.repeat(3);

See reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#repeat

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#repeat-long-

Key Combining Operators in the Flux Class
« The mergeWith() operator Flux<T> mergeWith

: Publisher<? extends T> other
« Merge data from this Flux & a ()
Publisher into an interleaved
merged sequence

See projectreactor.io/docs/core/release/api/reactor/core/publisher/Fux.html#mergeWith

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#mergeWith-org.reactivestreams.Publisher-

Key Combining Operators in the Flux Class

« The mergeWith() operator Flux<T> mergeWith
i Publisher<? extends T> other
« Merge data from this Flux & a ()
Publisher into an interleaved Interface Publisher<T>

merged sequence

» The param is the Publisher
to merge with

Type Parameters:

T - the type of element signaled.

All Known Subinterfaces:

Processor<T,R>

public interface Publisher<T»>

A Publisher is a provider of a potentially unbounded number of sequenced
elements, publishing them according to the demand received from its
Subscriber(s).

A Publisher can serve multiple Subscribers subscribed
subscribe(Subscriber) dynamically at various points in time.

See www.readive-streams.org/readive-streams-1.0.3-javadoc/org/readivestreams/Publisherhtm

http://www.reactive-streams.org/reactive-streams-1.0.3-javadoc/org/reactivestreams/Publisher.html?is-external=true

Key Combining Operators in the Flux Class

« The mergeWith() operator Flux<T> mergeWith

: Publisher<? extends T> other
« Merge data from this Flux & a ()
Publisher into an interleaved
merged sequence

« Returns the new merged
Flux instance

11

Key Combining Operators in the Flux Class

. : (M ()—|—>
The mergeWith() operator (% - |

.:
* This method combines items v v E

- - v vV VY
emitted by multiple Flux sources it
so that they appear as a single mergewl
Flux . ; ; [

Flux<BigFraction> f1 ...
Flux<BigFraction> £f2 ...
fl .mergeWith (£2)...

See Reactive/flux/ex1/src/main/java/FluxEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/flux/ex1/src/main/java/FluxEx.java

Key Combining Operators in the Flux Class

« The mergeWith() operator 4. O C l
ﬂ %

V V V V V
mergeWith

» This method combines items
emitted by multiple Flux sources
so that they appear as a single
Flux v v oy Y vy

- This merging may interleave —._._O_._O_l_'

the items

13

Key Combining Operators in the Flux Class

* The mergeWith() operator

This method combines items
emitted by multiple Flux sources

so that they appear as a single
Flux

w’vvvivv

ey = =

concatWith

v

YooYy

Y
—00—"0@ 01—

» Use concatWith() to avoid interleaving

See

projectreactor.io/docs/core/release/a

vi/reactor/core/

hublisher/Flux.html#concatWith

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html#concatWith-org.reactivestreams.Publisher-

Key Combining Operators in the Flux Class

« The mergeWith() operator 40_0 X

e N
O—0—=0+—
Y

vV

Y

Y V¥V VY
mergeWith
Y YV YV Y

r >

Observable<BigFraction> ol ...
Observable<BigFraction> o2 ...
ol .mergeWith (02) ...

« RxJava’s method Observable.
mergeWith() works the same

See readtivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#mergeWith

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/core/Observable.html#mergeWith-io.reactivex.rxjava3.core.ObservableSource-

Key Combining Operators in the Flux Class
* The mergeWith() operator concat

static <T> Stream<T> concat(Stream<? extends T> a,
Stream<? extends T> b)

Creates a lazily concatenated stream whose elements are all the
elements of the first stream followed by all the elements of the
second stream. The resulting stream is ordered if both of the
input streams are ordered, and parallel if either of the input
streams is parallel. When the resulting stream is closed, the
close handlers for both input streams are invoked.

List<String> concats
(List<String> 1, int n) {
Stream<String> s = Stream.empty() ;
while (--n >= 0)
° S|m||ar to the Stream.COncat() s = Stream.concat(s, l.stream())
method in Java Streams return s.collect(toList());

}
See docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#concat

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#concat-java.util.stream.Stream-java.util.stream.Stream-

End of Key Combining
Operators in the Flux Class
(Part 1)

17

