Key Concurrency & Scheduler Operators

Associated with the Mono Class (Part 2)

Douglas C. Schmidt
d.schmidt@Quanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems

Vanderbiit University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Recognize key Mono operators
« Concurrency & scheduler operators

« These operators arrange to run
other operators in designated
threads & thread pools

* e.g., Schedulers.parallel()

Key Scheduler Operators
Associated with the Mono Class

Key Scheduler Operators Associated with the Mono Class
« The Schedulers.parallel() operator static Scheduler

» Returns a Scheduler that hosts a parallel()
fixed pool of Executor Service-based
workers suitable for parallel work

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html#parallel--

Key Scheduler Operators Associated with the Mono Class

« The Schedulers.parallel() operator static Scheduler

» Returns a Scheduler that hosts a parallel()
fixed pool of Executor Service-based
workers suitable for parallel work

Mono<BigFraction> multiplyAsync (BigFraction bfl,
BigFraction bf2) ({

return Mono
.fromCallable(() -> bfl.multiply(bf2))

.subscribeOn (Schedulers.parallel()) ;

Create a Mono that emits the results of multiplying
bf1 & br2 in a thread from the parallel thread pool

See Reactive/mono/ex3/src/main/java/MonoEx.java

https://github.com/douglascraigschmidt/LiveLessons/blob/master/Reactive/mono/ex3/src/main/java/MonoEx.java

Key Scheduler Operators Associated with the Mono Class

 The Schedulers.parallel() operator Clamsiscednlers

* Returns a Scheduler that hosts a B
fixed pool of Executor Service-based

reactor.core.scheduler.Schedulers

Workers SUltabIe for para”el Work publizj abftract class Schedulers
extends Object
 Optimized for fast running non- By N

blocking operations
: Optimized for fast Runnable non-blocking executions

d | .e., COmpUtatIOn-I ntenS|Ve B : Optimized for low-latency Runnable one-off executions
not I/O'lntenS|Ve| o : Optimized for longer executions, an alternative for

blocking tasks where the number of active tasks (and threads) can
grow indefinitely
: Optimized for longer executions, an alternative for
blocking tasks where the number of active tasks (and threads) is
capped
: to immediately run submitted Runnable instead of

scheduling them (somewhat of a no-op or "null object")
to create new instances

around Executors

See projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

https://projectreactor.io/docs/core/release/api/reactor/core/scheduler/Schedulers.html

Key Scheduler Operators Associated with the Mono Class

* The Schedulers.parallel() operator
» Returns a Scheduler that hosts a
fixed pool of Executor Service-based .
workers suitable for parallel work p ! (
(

« Implemented via “daemon threads”

* i.e., won't prevent the app from
exiting even if its work isn't done

See www.baeldung.com/java-daemon-thread

http://www.baeldung.com/java-daemon-thread

Key Scheduler Operators Associated with the Mono Class

* The Schedulers.parallel() operator return Flux
.fromIterable (bigFractions)

.flatMap (bf -> Mono
.fromCallable(() ->
 This operator is often used with the bf)

flatMap() concurrency idiom .subscribeOn
(Schedulers
////’/// .parallel())
.map
(multiplyFracs))

Multiply many BigFraction
objects concurrently

.reduce (BigFraction: :add)

See lesson on “Key Transforming Operators in the Flux Class (Part 2)’

Key Scheduler Operators Associated with the Mono Class

« The Schedulers.parallel() operator computation

@NonNull
public static @NonNull Scheduler computation()

Returns a default, shared Scheduler instance intended for computational
work.

This can be used for event-loops, processing callbacks and other
computational work.

It is not recommended to perform blocking, I0-bound work on this
I/ . . .
« RxJava’s Schedulers.computation() | scheduler Useio) instead
|S S| m | | ar The default instance has a backing pool of single-threaded

ScheduledExecutorService instances equal to the number of available
processors (Runtime.availableProcessors()) to the Java VM.

Unhandled errors will be delivered to the scheduler Thread's
Thread.UncaughtExceptionHandler.

See readivex.io/RxJava/3.x/javadoc/io/readivex/rxjava3/schedulers/Schedulers.html#computation

http://reactivex.io/RxJava/3.x/javadoc/io/reactivex/rxjava3/schedulers/Schedulers.html#computation--

End of Key Concurrency &
Scheduler Operators Associated
with the Mono Class (Part 2)

10

